Question 13 - Examples - Chapter 13 Class 12 Probability
Last updated at April 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22 Important
Example 23 Important
Example 24 Important
Question 1
Question 2
Question 3 Important
Question 4 Important
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 You are here
Last updated at April 16, 2024 by Teachoo
Question 13 The probability of a shooter hitting a target is 3/4 . How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?Let X : Number of times he hits the target Hitting the target is a Bernoulli trial So, X has a binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here, n = number of rounds fired p = Probability of hitting = 3/4 q = 1 – p = 1 − 3/4 = 1/4 Hence, P(X = x) = nCx (𝟑/𝟒)^𝒙 (𝟏/𝟒)^(𝒏−𝒙) We need to find How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99 So, given P(X ≥ 1) > 99%, we need to find n Now, P(X ≥ 1) > 99 % 1 − P(X = 0) > 99 % ` 1 − nC0(3/4)^0 (1/4)^𝑛> 0.99 1 − (1/4)^𝑛 > 0.99 1 − 0.99 > (1/4)^𝑛 0.01 > 1/4^𝑛 4^𝑛 > 1/0.01 𝟒^𝒏 > 𝟏𝟎𝟎 We know that 44 = 256 So, n ≥ 4 So, the minimum value of n is 4 So, he must fire atleast 4 times `