Question 11 - Examples - Chapter 13 Class 12 Probability
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22 Important
Example 23 Important
Example 24 Important
Question 1
Question 2
Question 3 Important
Question 4 Important
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important You are here
Question 12
Question 13
Last updated at Dec. 16, 2024 by Teachoo
Question 11 Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. Find the probability that there is atleast one defective egg.Let X : be the number of defective eggs Picking eggs with replacement is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here, n = number of eggs picked = 10 p = Probability of getting defective egg = 10% = 10/100 = 1/10 q = 1 – p = 1 – 1/10 = 9/10 Hence, P(X = x) = 10Cx (𝟏/𝟏𝟎)^𝒙 (𝟗/𝟏𝟎)^(𝟏𝟎 − 𝒙) We need to find Probability that there is atleast one defective egg P(atleast one defective egg) = 1 – P(getting 0 defective eggs) = 1 – P(X = 0) = 1 – 10C0(1/10)^0 (9/10)^(10 −0) = 1 – 1 × 1 × (9/10)^10 = 1 – (9/10)^10