Question 3 - Examples - Chapter 13 Class 12 Probability
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22 Important
Example 23 Important
Example 24 Important
Question 1
Question 2
Question 3 Important You are here
Question 4 Important
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13
Last updated at Dec. 16, 2024 by Teachoo
Question 3 Two cards are drawn successively with replacement from a well-shuffled deck of 52 cards. Find the probability distribution of the number of aces. Let X : Number of aces We select two cards, So, we can select 2 Aces or 1 Aces or 0 Aces So, value of X can be 0, 1 & 2 There are 4 aces out of 52 So, P(ace) = 4/52 P(not ace) = 1 – P(ace) = 1 – 4/52 = 48/52 Finding probabilities separately For X = 0 Out of two cards, no ace is selected P(X = 0) = P(no ace) × P(no ace) = 48/52 × 48/52 = 144/169 There are 4 aces out of 52 So, P(ace) = 4/52 P(not ace) = 1 – P(ace) = 1 – 4/52 = 48/52 Finding probabilities separately For X = 0 Out of two cards, no ace is selected P(X = 0) = P(no ace) × P(no ace) = 48/52 × 48/52 = 144/169 For X = 1 Out of two Cards, One ace is selected There can be two cases Ace is selected first, then no ace No ace is selected first, then ace P(X = 1) = P(ace) × P(no ace) + P(no ace) × P(ace) = 4/52 × 48/52+4/52 × 48/52 = 12/169+12/169 = 24/169 X = 2 We select two aces P(X = 2) = P(ace) × P(ace) = 4/52 × 4/52 = 1/169 Thus Probability distribution is