Example 12 - Chapter 13 Class 12 Probability
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10
Example 11 Important
Example 12 Important You are here
Example 13 Important
Example 14 Important
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19 Important
Example 20 Important
Example 21 Important
Example 22 Important
Example 23 Important
Example 24 Important
Question 1
Question 2
Question 3 Important
Question 4 Important
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13
Last updated at Dec. 16, 2024 by Teachoo
Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads or three tails’, F ‘at least two heads’ and G ‘at most two heads’. of the pairs (E, F), (E, G) & (F, G), which are independent? which are dependent? Three coins are tossed simultaneously S = {(H, H, H), (H, H, T), (T, H, H), (H, T, H), (T, T, H), (T, H, T), (H, T, T), (T, T, T)} Given 3 events as E : 3 head or 3 tails F : atleast two heads G : atmost two heads Finding probabilities of E, F and G Event E E : 3 head or 3 tails E = {HHH, TTT} P(E) = 2/8 = 1/4 Event F F : atleast two heads F = {HHH, HHT, HTH, THH} P(F) = 4/8 = 1/2 Event G G : atmost two heads G ={HHT, HTH, THH HTT, THT, TTH ,TTT } P(G) = 7/8 Now, let us find Probabilities of E ∩ F , F ∩ G , E ∩ G E and F E ∩ F = {HHH} So, P(E ∩ F) = 1/8 Now, P(E) . P(F) = 1/4 × 1/2 = 1/8 = P(E ∩ F) P(E ∩ F) = P(E).P(F) Thus, E & F are independent events F and G F ∩ G = {HHH, HTH, THH} So, P(F ∩ G) = 3/8 Now, P(F) . P(G) = 1/2 × 7/8 = 7/16 P (F ∩ G) ≠ P(F) . P(G) Thus, F & G are not independent events E and G E ∩ G = {TTT} So, P(E ∩ G) = 1/8 Now, P(E) . P(G) = 1/4 × 7/8 = 7/32 P (E ∩G) ≠ P (E). P(G) Thus, E & G are not independent events