Question 12 - Mean or Expectation of random variable - Chapter 13 Class 12 Probability
Last updated at April 16, 2024 by Teachoo
Mean or Expectation of random variable
Mean or Expectation of random variable
Last updated at April 16, 2024 by Teachoo
Question 12 Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find E(X).The first 6 positive integers are : 1, 2, 3, 4, 5, 6 And they are selected without replacement Let X : be the larger number of two numbers selected The possible outcomes are Sample space = S = {█(█((1, 2),(1, 3),(1, 4),(1, 5),(1, 6),@(2, 1),(2, 3),(2, 4),(2, 5),(2, 6),)@█((3, 1),(3, 2),(3, 4),(3, 5),(3, 6),@(4, 1),(4, 2),(4, 3),(4, 5),(4, 6),)@█((5, 1),(5, 2),(5, 3),(5, 4),(5, 6),@(6, 1),(6, 2),(6, 3),(6, 4),(6, 5) ))} Total number of possible outcomes = 30 The larger number can be : 2, 3, 4, 5 or 6 So, the values of X can be : 2, 3, 4, 5 or 6 Thus, the probability distribution is The mean Expected value is given by 𝝁=𝑬(𝑿)=∑_(𝑖=1)^𝑛▒𝑥𝑖𝑃𝑖 = 2 × 2/30+"3 × " 4/30+ 4 × 6/30+ 5 × 8/30+ 6 × 10/30 = (4 + 12 + 24 + 40 + 60)/30 = 140/30 = 𝟏𝟒/𝟑