Ex 13.3, 13 (MCQ) - Chapter 13 Class 12 Probability (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 13 Class 12 Probability
Example 6
Ex 13.1, 10 (a) Important
Ex 13.1, 12 Important
Example 11 Important
Ex 13.2, 7 Important
Ex 13.2, 11 (i)
Ex 13.2, 14 Important
Example 17 Important
Example 18 Important
Example 20 Important
Example 21 Important
Ex 13.3, 2 Important
Ex 13.3, 4 Important
Ex 13.3, 8 Important
Ex 13.3, 10 Important
Ex 13.3, 12 Important
Ex 13.3, 13 (MCQ) Important You are here
Question 4 Important
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 3 Important
Question 6 Important
Question 11 Important
Question 15
Question 10 Important
Question 11 Important
Question 4 Important
Question 6 Important
Question 10 Important
Question 13 Important
Question 13
Example 23 Important
Question 2 Important
Question 4
Question 6 Important
Misc 7 Important
Misc 10 Important
Chapter 13 Class 12 Probability
Last updated at Dec. 16, 2024 by Teachoo
Ex 13.3, 13 Probability that A speaks truth is 4/5 . A coin is tossed. A reports that a head appears. The probability that actually there was head is (A) 4/5 (B) 1/2 (C) 1/5 (D) π/πLet E : A speaks truth F : A Lies H : head appears on the toss of a coin We need to find the Probability that head actually appears, if A reports that a head appears i.e. P(E|H) P(E|H) = "P(E) . P(H|E) " /"P(F) . P(H|F) + P(E) . P(H|E)" P(E) = Probability that A speaks truth = π/π P(H|E) = Probability that head appears, if A speaks truth = π/π P(F) = Probability that A lies = 1 β P(E) = 1 β 4/5 = π/π P(H|F) = Probability that head appears, if A lies = π/π Putting values in formula, P(E|H) = (4/5 Γ 1/2)/(1/5 Γ 1/2 + 4/5 Γ 1/2) = (1/5 Γ 1/2 Γ 4)/(1/5 Γ 1/2 [1 + 4]) = 4/5 Therefore, required probability is 4/5 β΄ A is the correct answer