Ex 13.2
Ex 13.2, 2
Ex 13.2, 3 Important
Ex 13.2, 4
Ex 13.2, 5
Ex 13.2, 6
Ex 13.2, 7 Important
Ex 13.2, 8
Ex 13.2, 9 Important
Ex 13.2, 10 Important
Ex 13.2, 11 (i)
Ex 13.2, 11 (ii) Important
Ex 13.2, 11 (iii)
Ex 13.2, 11 (iv) Important
Ex 13.2, 12
Ex 13.2, 13 Important
Ex 13.2, 14 Important You are here
Ex 13.2, 15 (i)
Ex 13.2, 15 (ii)
Ex 13.2, 15 (iii) Important
Ex 13.2, 16 Important
Ex 13.2, 17 (MCQ)
Ex 13.2, 18 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 13.2, 14 Probability of solving specific problem independently by A and B are 1/2 and 1/3 respectively. If both try to solve the problem independently, find the Probability that (i) the problem is solved.Given, P(A) = 1/2 & P(B) = 1/3 Probability that the problem is solved = Probability that A solves the problem or B solves the problem = P(A ∪ B) = P(A) + P(B) – P(A ∩ B) Since A & B are independent, P(A ∩ B) = P(A) . P(B) = 1/2 × 1/3 = 1/6 Now, P(Problem is solved) = P(A) + P(B) – P(A ∩ B) = 1/2 + 1/3 – 1/6 = 3/6 + 2/6 – 1/6 = 4/6 = 𝟐/𝟑 Ex 13.2, 14 Probability of solving specific problem independently by A and B are 1/2 and 1/3 respectively. If both try to solve the problem independently, find the Probability that (ii) exactly one of them solves the problem. Probability that exactly one of them solves the problem = Probability that only A solves + Probability that only B solves Therefore, P(exactly one of them solves) = P(A alone solves) + P(B alone solves) = P(A ∩ B’) + P(B ∩ A’) = (P(A) – P(A ∩ B)) + (P(B) – P(B ∩ A)) = P(A) + P(B) – 2P(A ∩ B) = 1/2 + 1/3 – 2 × 1/6 = 1/2 + 1/3 – 1/3 = 𝟏/𝟐