Conditional Probability - Values given
Last updated at April 16, 2024 by Teachoo
Ex 13.1, 5 If P(A) = 6/11 , P(B) = 5/11 and P(A ∪ B) 7/11 , find (i) P(A ∩ B)Given P(A) = 6/11 , P(B) = 5/11 & P(A ∪ B) 7/11 Now, P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 7/11 = 6/11 + 5/11 – P(A ∩ B) P(A ∩ B) = 11/11 – 7/11 P(A ∩ B) = 𝟒/𝟏𝟏 Ex 13.1, 5 If P(A) = 6/11 , P(B) = 5/11 and P(A ∪ B) 7/11 , find (ii) P(A|B)P(A|B) = (𝑃(𝐴 ∩ 𝐵))/(𝑃(𝐵)) = (4/11)/(5/11) = 𝟒/𝟓 Ex 13.1, 5 If P(A) = 6/11 , P(B) = 5/11 and P(A ∪ B) 7/11 , find (iii) P(B|A)P(B|A) = (𝑃(𝐵 ∩ 𝐴))/(𝑃(𝐴)) = (4/11)/(6/11) = 4/6 = 𝟐/𝟑