Misc 2 - Chapter 1 Class 12 Relation and Functions
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2 You are here
Misc 3 Important
Misc 4 Important
Misc 5
Misc 6 (MCQ) Important
Misc 7 (MCQ) Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7 (i) Important
Question 7 (ii)
Question 8
Question 9 Important
Question 10 Important
Question 11
Question 12 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Misc 2 Show that the function f: R → R given by f(x) = x3 is injective. f(x) = x3 We need to check injective (one-one) f (x1) = (x1)3 f (x2) = (x2)3 Putting f (x1) = f (x2) (x1)3 = (x2)3 x1 = x2 Since if f (x1) = f (x2) , then x1 = x2 ∴ It is one-one (injective) Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2