
To prove relation reflexive, transitive, symmetric and equivalent
To prove relation reflexive, transitive, symmetric and equivalent
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Ex 1.1, 10 Given an example of a relation. Which is (i) Symmetric but neither reflexive nor transitive. Let A = {1, 2, 3}. Let relation R on set A be Let R = {(1, 2), (2, 1)} Check Reflexive If the relation is reflexive, then (a, a) ∈ R for every a ∈ {1,2,3} Since (1, 1), (2, 2), (3, 3) ∉ R ∴ R is not reflexive Check Symmetric Since (1, 2) ∈ R , (2, 1) ∈ R So, If (a, b) ∈ R, then (b, a) ∈ R ∴ R is symmetric. Check transitive To check whether transitive or not, If (a, b) ∈ R & (b, c) ∈ R , then (a, c) ∈ R If a = 1, b = 2, but there is no c (no third element) Similarly, if a = 2, b = 1, but there is no c (no third element) Hence ,R is not transitive Hence, relation R is symmetric but not reflexive and transitive