Example 24 - Chapter 1 Class 12 Relation and Functions
Last updated at April 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6 Important
Example 7
Example 8 Important
Example 9
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15
Example 16
Example 17 Important
Example 18
Example 19 Important
Example 20 Important
Example 21
Example 22 Important
Example 23 Important
Example 24 Important You are here
Example 25
Example 26 Important
Question 1
Question 2 Important
Question 3 Important
Question 4
Question 5
Question 6
Question 7
Question 8 Important
Question 9
Question 10 Important
Question 11 (a)
Question 11 (b)
Question 11 (c)
Question 12
Question 13
Question 14 Important
Question 15
Question 16
Question 17
Question 18
Question 19
Question 20 Important
Question 21
Question 22
Question 23
Question 24 (a)
Question 24 (b)
Question 25
Last updated at April 16, 2024 by Teachoo
Example 24 Show that the number of equivalence relation in the set {1, 2, 3} containing (1, 2) and (2, 1) is two. Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Each relation should have (1, 2) and (2, 1) in it For other pairs, Let’s check which pairs will be in relation, and which won’t be Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Reflexive means (a, a) should be in relation . So, (1, 1) , (2, 2) , (3, 3) should be in a relation Symmetric means if (a, b) is in relation, then (b, a) should be in relation . So, since (1, 2) is in relation, (2, 1) should also be in relation Transitive means if (a, b) is in relation, & (b, c) is in relation, then (a, c) is in relation So, if (1, 2) is in relation, & (2, 1) is in relation, then (1, 1) should be in relation Relation R1 = { Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } So, smallest relation is R1 = { (1, 2), (2, 1), (1, 1), (2, 2), (3, 3) } If we add (2, 3), then we have to add (3, 2) also , as it is symmetric but, as (1 , 2) & (2, 3) are there, we need to add (1, 3) also , as it is transitive As we are adding (1, 3), we should add (3, 1) also, as it is symmetric Relation R2 = { Hence, only two possible relations are there which are equivalence