Example 18 - Chapter 1 Class 12 Relation and Functions
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6 Important
Example 7
Example 8 Important
Example 9
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15
Example 16
Example 17 Important
Example 18 You are here
Example 19 Important
Example 20 Important
Example 21
Example 22 Important
Example 23 Important
Example 24 Important
Example 25
Example 26 Important
Question 1
Question 2 Important
Question 3 Important
Question 4
Question 5
Question 6
Question 7
Question 8 Important
Question 9
Question 10 Important
Question 11 (a)
Question 11 (b)
Question 11 (c)
Question 12
Question 13
Question 14 Important
Question 15
Question 16
Question 17
Question 18
Question 19
Question 20 Important
Question 21
Question 22
Question 23
Question 24 (a)
Question 24 (b)
Question 25
Last updated at Dec. 16, 2024 by Teachoo
Example 18 If R1 and R2 are equivalence relations in a set A, show that R1 ∩ R2 is also an equivalence relation. R1 is an equivalence relation 1. R1 is symmetric (a, a) ∈ R1, for all a ∈ A. 2. R1 is reflexive If (a, b) ∈ R1 , then (b, a) ∈ R1 3. R1 is transitive If (a, b) ∈ R1 & (b, c) ∈ R1 , then (a, c) ∈ R1 R2 is an equivalence relation 1. R2 is symmetric (a, a) ∈ R2, for all a ∈ A. 2. R2 is reflexive If (a, b) ∈ R2 , then (b, a) ∈ R2 3. R2 is transitive If (a, b) ∈ R2 & (b, c) ∈ R2 , then (a, c) ∈ R2 We have to prove R1 ∩ R2 is equivalence relation Check reflexive For all a ∈ A (a, a) ∈ R1, & (a, a) ∈ R2 Hence, (a, a) ∈ both R1 & R2 Hence, (a, a) ∈ R1 ∩ R2 ∴ R1 ∩ R2 is reflexive. Check symmetric R1 is symmetric ,hence If (a, b) ∈ R1 , then (b, a) ∈ R1 R2 is symmetric, hence If (a, b) ∈ R2 , then (b, a) ∈ R2 From (1) and (2) If (a, b) ∈ R1 ∩ R2, then (b, a) ∈ R1 ∩ R2 Hence , R1 ∩ R2 is symmetric. Checking transitive R1 is transitive, Hence, if (a, b) ∈ R1 & (b, c) ∈ R1 , then (a, c) ∈ R1 R2 is transitive, Hence, if (a, b) ∈ R2 & (b, c) ∈ R2 , then (a, c) ∈ R2 From (3) & (4) If (a, b) ∈ R1 ∩ R2 and (b, c) ∈ R1 ∩ R2 , then (a, c) ∈ R1 ∩ R2, ∴ R1∩ R2 is transitive. Thus, R1 ∩ R2 is an equivalence relation.