Question 7 - Examples - Chapter 1 Class 12 Relation and Functions
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6 Important
Example 7
Example 8 Important
Example 9
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15
Example 16
Example 17 Important
Example 18
Example 19 Important
Example 20 Important
Example 21
Example 22 Important
Example 23 Important
Example 24 Important
Example 25
Example 26 Important
Question 1
Question 2 Important
Question 3 Important
Question 4
Question 5
Question 6
Question 7 You are here
Question 8 Important
Question 9
Question 10 Important
Question 11 (a)
Question 11 (b)
Question 11 (c)
Question 12
Question 13
Question 14 Important
Question 15
Question 16
Question 17
Question 18
Question 19
Question 20 Important
Question 21
Question 22
Question 23
Question 24 (a)
Question 24 (b)
Question 25
Last updated at Dec. 16, 2024 by Teachoo
Question 7 (Method 1) Let Y = {n2 : n ∈ N} ⊂ N. Consider f : N → Y as f (n) = n2. Show that f is invertible. Find the inverse of f f(n) = n2 Step 1 Put f(n) = y y = n2 n2 = y n = ± √𝑦 Since f : N → Y, n ∈ N, Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY So, n is positive ∴ n = √𝑦 Let g(y) = √𝑦 where g: Y → N Now, f(n) = n2 & g(y) = √𝑦 Step 2: gof = g(f(n)) = g(n2) = √((𝑛2)) = n Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY Hence, gof = n = IN Step 3: fog = f(g(y)) = f(√𝑦 ) = (√𝑦)2 = 𝑦^(1/2 × 2) = 𝑦^1 = y Hence, fog(y) = y = IY Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY Since gof = IN and fog = IY, f is invertible & Inverse of f = g(y) = √𝒚 Question 7 (Method 2) Let Y = {n2 : n ∈ N} ⊂ N. Consider f : N → Y as f (n) = n2. Show that f is invertible. Find the inverse of f f(n) = n2 f is invertible if it is one-one and onto Check one-one f(n1) = n12 f(n2) = n22 Put f(n1) = f(n2) n12 = n22 ⇒ n1 = n2 & n1 = – n2 Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 As n ∈ N, it is positive So, n1 ≠ – n2 ∴ n1 = n2 So, if f(n1) = f(n2) , then n1 = n2 ∴ f is one-one Check onto f(n) = n2 Let f(x) = y , where y ∈ Y y = n2 n2 = y n = ± √𝑦 Since f : N → Y, n ∈ N, So, n is positive ∴ n = √𝑦 Now, Checking for y = f(n) Putting value of n in f(n) f(n) = f(√𝑦) = (√𝑦)^2 = 𝑦 For all values of y, y ∈ Y, There exists n ∈ N such that f(n) = y Hence, f is onto Since f(x) is one-one and onto, So, f(x) is invertible Finding inverse Inverse of x = 𝑓^(−1) (𝑦) = √𝑦 ∴ Inverse of f = g(y) = √𝒚