Example 5 - Chapter 1 Class 12 Relation and Functions
Last updated at April 16, 2024 by Teachoo
To prove relation reflexive, transitive, symmetric and equivalent
Example 4 Important
Ex 1.1, 6
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 7
Ex 1.1, 1 (i)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 10 (i)
Ex 1.1, 8
Ex 1.1, 9 (i)
Example 5 You are here
Example 6 Important
Example 2
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 11
Example 3
Ex 1.1, 14
Misc 3 Important
Example 19 Important
Example 18
To prove relation reflexive, transitive, symmetric and equivalent
Last updated at April 16, 2024 by Teachoo
Example 5 Show that the relation R in the set Z of integers given by R = {(a, b) : 2 divides a – b} is an equivalence relation. R = {(a, b) : 2 divides a – b} Check reflexive Since a – a = 0 & 2 divides 0 , eg: 0/2 = 0 ⇒ 2 divides a – a ∴ (a, a) ∈ R, ∴ R is reflexive. Check symmetric If 2 divides a – b , then 2 divides –(a – b) i.e. b – a Hence, If (a, b) ∈ R, then (b, a) ∈ R ∴ R is symmetric Check transitive If 2 divides (a – b) , & 2 divides (b – c) , So, 2 divides (a – b) + (b – c) also So, 2 divides (a – c) ∴ If (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R Therefore, R is transitive. Thus, R is an equivalence relation in Z.