Slide3.JPG

Slide4.JPG

Go Ad-free

Transcript

Example 2 Let T be the set of all triangles in a plane with R a relation in T given by R = {(T1, T2) : T1 is congruent to T2}. Show that R is an equivalence relation. R = {(T1, T2) : T1 is congruent to T2}. Check reflexive Since every triangle is congruent to itself Triangle T is congruent to triangle T ∴ (T , T) ∈ R So, R is reflexive, Check symmetric If T1 is congruent to T2 , then T2 is congruent to T1 So, if (T1, T2) ∈ R , then (T2, T1) ∈ R. Hence , R is symmetric. Check transitive If T1 is congruent to T2 , & T2 is congruent to T3 then T1 is congruent to T3 So, if (T1, T2), (T2, T3) ∈ R , then (T1, T3) ∈ R. So, R is transitive Since R is reflexive, symmetric & transitive. Therefore, R is an equivalence relation.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo