Ex 1.3, 4 - If f(x) = 4x - 3 / 6x - 4, show that fof(x) = x - Finding Inverse

  Ex 1.3 , 4 - Part 2
  Ex 1.3 , 4 - Part 3

Go Ad-free

Transcript

Ex1.3 , 4 If 𝑓(𝑥)=﷐(4𝑥 − 3)﷮6𝑥 − 4﷯, 𝑥 ≠ ﷐2﷮3﷯ , show that 𝑓𝑜𝑓(𝑥)=𝑥, for all 𝑥 ≠ ﷐2﷮3﷯ . What is the inverse of f? 𝑓(𝑥)=﷐(4𝑥 − 3)﷮6𝑥 − 4﷯ 𝑓(𝑓﷐𝑥﷯) = ﷐4𝑓(𝑥) − 3﷮6𝑓(𝑥) − 4﷯ 𝑓𝑜𝑓﷐𝑥﷯ = ﷐4﷐﷐4𝑥 − 3﷮6𝑥 − 4﷯﷯ − 3﷮6﷐﷐4𝑥 − 3﷮6𝑥 − 4﷯﷯ − 4﷯ = ﷐﷐4﷐4𝑥 − 3﷯ − 3﷐6𝑥 − 4﷯﷮6𝑥 − 4﷯﷮﷐6﷐4𝑥 − 3﷯ − 4﷐6𝑥 − 4﷯﷮6𝑥 − 4﷯﷯ = ﷐﷐16𝑥 − 12 − 18𝑥 +12﷮6𝑥 − 4﷯﷮﷐24𝑥 − 18 − 24𝑥 +16﷮6𝑥 − 4﷯﷯ = ﷐16𝑥 − 12 − 18𝑥 +12﷮6𝑥 − 4﷯ × ﷐6𝑥 − 4﷮24𝑥 − 18 − 24𝑥 + 16﷯ = ﷐16𝑥 − 12 − 18𝑥 +12﷮24𝑥 −18 −24𝑥 +16﷯ = ﷐−2𝑥 + 0﷮0 − 2﷯ = ﷐−2𝑥﷮− 2﷯ = x ∴ 𝑓𝑜𝑓﷐𝑥﷯ = x Calculating inverse of f(x) 𝑓(𝑥)=﷐(4𝑥 − 3)﷮6𝑥 − 4﷯ Put f(x) = y y = ﷐(4𝑥 − 3)﷮6𝑥 − 4﷯ y(6x – 4) = (4x – 3) 6xy – 4y = 4x – 3 6xy – 4x = 4y – 3 x(6y – 4) = 4y – 3 x = ﷐4𝑦 − 3﷮6𝑦 − 4﷯ So, inverse of f = ﷐4𝑦 − 3﷮6𝑦 − 4﷯ ∴ Let inverse of f = g (y) = ﷐4𝑦 − 3﷮6𝑦 − 4﷯ g (y) = ﷐4𝑦 − 3﷮6𝑦 − 4﷯ Replacing y with x g (x) = ﷐4𝑥 − 3﷮6𝑥 − 4﷯ = f(x) Hence we can say inverse of f is f itself i.e. f -1 = f

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo