Logarithmic Differentiation - Type 1
Example 29 Important
Ex 5.5, 3 Important
Ex 5.5, 15
Ex 5.5, 5
Ex 5.5, 1 Important
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Example 27 Important
Ex 5.5, 2
Misc 22 Important
Misc 3
Misc 7 Important
Example 41
Misc 9 Important
Example 40 (i) You are here
Logarithmic Differentiation - Type 1
Last updated at Dec. 16, 2024 by Teachoo
Example 40 (Method 1) Differentiate the following π€.π.π‘. π₯. (i) cos^(β1) (sinβ‘π₯) Let π(π₯) = cos^(β1) (sinβ‘π₯) π(π₯) = cos^(β1) (γcos γβ‘(π/2 βπ₯) ) π(π) = π /π βπ Differentiating π€.π.π‘.π₯ πβ(π₯) = (π (π/2))/ππ₯ β (π(π₯))/ππ₯ πβ(π₯) = 0 β 1 πβ(π) = β 1(π΄π γ π ππ π γβ‘γ=γπππ γβ‘γ(π/2 βπ₯)γ γ ) ("As " (π(π₯))/ππ₯ " = 1 & " π/2 " is constant" ) Example 40 (Method 2) Differentiate the following π€.π.π‘. π₯. (i) cos^(β1) (sinβ‘π₯) Let π(π₯) = cos^(β1) (sinβ‘π₯) Differentiating π€.π.π‘.π₯ πβ²(π₯) = (β1)/β(1 β γ(sinβ‘π₯)γ^2 ) Γ (sinβ‘π₯ )^β² πβ²(π₯) = (β1)/β(1 β sin^2β‘π₯ ) Γcosβ‘π₯ πβ²(π₯) = (β1)/β(cos^2β‘π₯ ) Γcosβ‘π₯ πβ²(π₯) = (β1)/cosβ‘π₯ Γcosβ‘π₯ πβ(π) = β1