Slide13.JPG

Slide14.JPG

Go Ad-free

Transcript

Example 36 If 𝑦 = A sin⁑π‘₯+B cos⁑π‘₯, then prove that 𝑑2𝑦/𝑑π‘₯2 + y = 0.𝑦 = A sin⁑π‘₯+B cos⁑π‘₯ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑦/𝑑π‘₯ = 𝑑(A sin⁑π‘₯ + B cos⁑π‘₯" " )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 𝑑(A sin⁑π‘₯ )/𝑑π‘₯ + 𝑑(B cos⁑π‘₯ )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = A . 𝑑(sin⁑π‘₯ )/𝑑π‘₯ + B . 𝑑(cos⁑π‘₯" " )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = A cos⁑π‘₯" " + B (βˆ’ sin⁑π‘₯) π’…π’š/𝒅𝒙 = A 𝒄𝒐𝒔⁑𝒙" " βˆ’ B π’”π’Šπ’β‘π’™ Again Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (𝑑 (γ€–A cos〗⁑π‘₯" " " βˆ’" γ€–B sin〗⁑π‘₯))/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = 𝑑(A cos⁑π‘₯ )/𝑑π‘₯ βˆ’ 𝑑(B sin⁑π‘₯" " )/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = –A sin⁑π‘₯ βˆ’ B cos⁑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = – (A sin⁑π‘₯ + B cos⁑π‘₯) (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = –y π’…πŸπ’š/π’…π’™πŸ + π’š = 𝟎 Hence proved (As 𝑦 = 𝐴 𝑠𝑖𝑛⁑π‘₯+𝐡 π‘π‘œπ‘ β‘π‘₯)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo