Finding second order derivatives - Normal form
Finding second order derivatives - Normal form
Last updated at Dec. 16, 2024 by Teachoo
Example 35 Find π2π¦/ππ₯2 , if π¦ = π₯3+tanβ‘π₯. π¦ = π₯3+tanβ‘π₯ Differentiating π€.π.π‘.π₯ ππ¦/ππ₯ = (π(π₯^3+ tanβ‘γπ₯)γ)/ππ₯ ππ¦/ππ₯ = (π(π₯^3))/ππ₯ + (π(tanβ‘γπ₯)γ)/ππ₯ π π/π π = πππ+ππππ π Again Differentiating π€.π.π‘.π₯ (π^2 π¦)/γππ₯γ^2 = (π (3π₯2 +sec^2β‘π₯))/ππ₯ (π^2 π¦)/γππ₯γ^2 = (π (3π₯2))/ππ₯ + (π (sec2 π₯))/ππ₯ (π^2 π¦)/γππ₯γ^2 = 6π₯+2 secβ‘π₯ . (π(secβ‘γπ₯)γ)/ππ₯ (π^2 π¦)/γππ₯γ^2 = 6π₯+2 secβ‘π₯.secβ‘γπ₯ tanβ‘π₯ γ γπ πγ^π/γπ πγ^π = ππ+π γπππγ^πβ‘π . πππ§β‘π