Slide14.JPG

Slide15.JPG

Go Ad-free

Transcript

Example 28 Differentiate ๐‘Ž^๐‘ฅ ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ, where a is a positive constant.Let y = ๐‘Ž^๐‘ฅ Taking log on both sides logโก๐‘ฆ = logโก๐‘Ž^๐‘ฅ ๐’๐’๐’ˆโก๐’š = ๐’™ ๐’๐’๐’ˆโก ๐’‚ Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ (๐‘‘(logโก๐‘ฆ))/๐‘‘๐‘ฅ = ๐‘‘/๐‘‘๐‘ฅ(๐‘ฅ logโก๐‘Ž) (๐‘‘(logโก๐‘ฆ))/๐‘‘๐‘ฅ = logโก๐‘Ž (๐‘‘๐‘ฅ/๐‘‘๐‘ฅ) (๐‘‘(logโก๐‘ฆ))/๐‘‘๐‘ฅ = ๐’๐’๐’ˆโก๐’‚ (๐‘™๐‘œ๐‘”โกใ€–๐‘Ž^๐‘=๐‘ ๐‘™๐‘œ๐‘”โก๐‘Ž ใ€—) (๐‘‘(logโก๐‘ฆ))/๐‘‘๐‘ฅ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ = logโก๐‘Ž (๐‘‘(logโก๐‘ฆ))/๐‘‘๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = logโก๐‘Ž 1/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = logโก๐‘Ž ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฆ logโก๐‘Ž Putting back ๐‘ฆ = ๐‘Ž^๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐’‚^๐’™ ๐’๐’๐’ˆโก๐’‚

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo