Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19
Example 20 Important
Example 21
Example 22
Example 23
Example 24 Important
Example 25
Example 26 (i)
Example 26 (ii) Important
Example 26 (iii) Important
Example 26 (iv)
Example 27 Important
Example 28
Example 29 Important
Example 30 Important
Example 31
Example 32
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Example 38 Important
Example 39 (i)
Example 39 (ii) Important
Example 40 (i)
Example 40 (ii) Important
Example 40 (iii) Important
Example 41
Example 42 Important
Example 43
Question 1
Question 2 Important
Question 3 You are here
Question 4 Important
Question 5
Question 6 Important
Last updated at April 16, 2024 by Teachoo
Question 3 Find the derivative of f given by f (x) = tanβ1 π₯ assuming it exists. π (π₯)=γπ‘ππγ^(β1) π₯ Let π= γπππγ^(βπ) π tanβ‘γπ¦=π₯γ π=πππ§β‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (tanβ‘π¦ ))/ππ₯ 1 = (π (tanβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (tanβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = γπ¬ππγ^π π . ππ¦/ππ₯ 1 = (π + πππππ) ππ¦/ππ₯ ππ¦/ππ₯ = 1/(1 + γπππ§γ^πβ‘π ) Putting π‘ππβ‘π¦ = π₯ ππ¦/ππ₯ = 1/(1 + π^π ) Hence (π (γπππ§γ^(βπ)β‘γπ)γ)/π π = π/(π + π^π ) As π¦ = γπ‘ππγ^(β1) π₯ So, πππβ‘π = π Derivative of γπππγ^(βπ) π π (π₯)=γπππ γ^(β1) π₯ Let π= γπππγ^(βπ) π cosβ‘γπ¦=π₯γ π=ππ¨π¬β‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (cosβ‘π¦ ))/ππ₯ 1 = (π (cosβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (cosβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = (βsinβ‘π¦) ππ¦/ππ₯ (β1)/sinβ‘π¦ =ππ¦/ππ₯ ππ¦/ππ₯ = (β1)/πππβ‘π ππ¦/ππ₯= (β1)/β(π β γπππγ^π π) Putting πππ β‘γπ¦=π₯γ ππ¦/ππ₯= (β1)/β(1 β π^π ) Hence, (π (γπππγ^(βπ) π" " ))/π π = (βπ)/β(π β π^π ) "We know that" γπ ππγ^2 π+γπππ γ^2 π=1 γπ ππγ^2 π=1βγπππ γ^2 π πππβ‘π½=β(πβγπππγ^π π½) " " As π¦ = γπππ γ^(β1) π₯ So, πππβ‘π = π Derivative of γπππγ^(βπ) π π (π₯)=γπππ‘γ^(β1) π₯ Let π= γπππγ^(βπ) π cotβ‘γπ¦=π₯γ π=ππ¨πβ‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (cotβ‘π¦ ))/ππ₯ 1 = (π (cotβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (cotβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = βππ¨γπ¬ππγ^π π . ππ¦/ππ₯ 1 = β(π +πππππ) ππ¦/ππ₯ ππ¦/ππ₯ = (β1)/(1 + γππ¨πγ^πβ‘π ) Putting πππ‘β‘π¦ = π₯ ππ¦/ππ₯ = (β1)/(π^π + π) Hence (π (γππ¨πγ^(βπ)β‘γπ)γ)/π π = (βπ)/(π^π + π) (π΄π γ πππ ππγ^2β‘γπ¦= γ1+γβ‘γπππ‘γ^2β‘π¦ γ) As π¦ = γπππ‘γ^(β1) π₯ So, πππβ‘π = π Derivative of γπππγ^(βπ) π π (π₯)=γπ ππγ^(β1) π₯ Let π= γπππγ^(βπ) π secβ‘γπ¦=π₯γ π=π¬ππβ‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (secβ‘π¦ ))/ππ₯ 1 = (π (secβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (secβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = πππβ‘π .πππβ‘π. ππ¦/ππ₯ ππ¦/ππ₯ = 1/(πππβ‘π .γ secγβ‘π¦ ) ππ¦/ππ₯ = 1/((β(γπ¬ππγ^πβ‘π β π)) .γ secγβ‘π¦ ) Putting value of π ππβ‘π¦ = π₯ ππ¦/ππ₯ = 1/((β(π₯^2 β 1 ) ) . π₯) ππ¦/ππ₯ = 1/(π₯ β(π₯^2 β 1 ) ) Hence π (γπππγ^(βπ) π)/π π = π/(π β(π^π β π ) ) As tan2 ΞΈ = sec2 ΞΈ β 1, tan ΞΈ = β("sec2 ΞΈ β 1" ) As π¦ = γπ ππγ^(β1) π₯ So, πππβ‘π = πDerivative of γπππππγ^(βπ) π π (π₯)=γπππ ππγ^(β1) π₯ Let π= γπππππγ^(βπ) π cosecβ‘γπ¦=π₯γ π=ππ¨π¬ππβ‘γπ γ 1 = (π (cosecβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = βcosecβ‘π¦ .cotβ‘π¦ . ππ¦/ππ₯ ππ¦/ππ₯ = 1/(γβcosecγβ‘π¦ .πππβ‘π ) ππ¦/ππ₯ = 1/(γβcosecγβ‘π¦ . β(γππ¨πππγ^πβ‘π β π)) Putting value of πππ ππβ‘π¦ = π₯ ππ¦/ππ₯ = (β1)/(π₯ β(π₯^2 β 1 ) ) Hence π (γπππππγ^(βπ) π)/π π = (βπ)/(π β(π^π β π ) ) As cot2 ΞΈ = cosec2 ΞΈ β 1, cot ΞΈ = β("cosec2 ΞΈ β 1" ) Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (cosecβ‘π¦ ))/ππ₯ 1 = (π (cosecβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ As cot2 ΞΈ = cosec2 ΞΈ β 1, cot ΞΈ = β("cosec2 ΞΈ β 1" ) As π¦ = coγπ ππγ^(β1) π₯ So, coπππβ‘π = π