Checking continuity using LHL and RHL
Example 10
Example 13 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1 ,6
Ex 5.1, 13
Ex 5.1, 12 Important
Example 11 Important You are here
Example 7
Ex 5.1, 3 (a)
Ex 5.1, 14
Ex 5.1, 16
Ex 5.1, 15 Important
Ex 5.1 ,7 Important
Ex 5.1, 25
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 29
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 26 Important
Ex 5.1, 30 Important
Example 15 Important
Checking continuity using LHL and RHL
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Example 11 Find all the points of discontinuity of the function f defined by π(π₯)={β(&π₯+2 ,ππ π₯<1@0 , ππ π₯=1@&π₯β2 ,ππ π₯>1)β€ π(π₯)={β(&π₯+2 ,ππ π₯<1@0 , ππ π₯=1@&π₯β2 ,ππ π₯>1)β€ Since we need to find continuity at of the function We check continuity for different values of x When x = 1 When x < 1 When x > 1Case 1 : When x = 1 f(x) is continuous at π₯ =1 if L.H.L = R.H.L = π(1) if limβ¬(xβ1^β ) π(π₯)=limβ¬(xβ1^+ ) " " π(π₯)= π(1) Since there are two different functions on the left & right of 1, we take LHL & RHL . LHL at x β 1 limβ¬(xβ1^β ) f(x) = limβ¬(hβ0) f(1 β h) = limβ¬(hβ0) (1ββ)+2 = limβ¬(hβ0) (3ββ) = 3 β 0 = 3 RHL at x β 1 limβ¬(xβ1^+ ) f(x) = limβ¬(hβ0) f(1 + h) = limβ¬(hβ0) (1+β)β2 = limβ¬(hβ0) (β1+β) = β1 + 0 = β1 Since L.H.L β R.H.L f(x) is not continuous at x=1 Case 2 : When x < 1 For x < 1, f(x) = x + 2 Since this a polynomial It is continuous β΄ f(x) is continuous for x < 1 Case 3 : When x > 1 For x > 1, f(x) = x β 2 Since this a polynomial It is continuous β΄ f(x) is continuous for x > 1 Hence, only π₯=1 is point is discontinuity. f is continuous at all real numbers except 1 Thus, f is continuous for πβ R β {1}