Checking continuity using LHL and RHL
Example 10 You are here
Example 13 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1 ,6
Ex 5.1, 13
Ex 5.1, 12 Important
Example 11 Important
Example 7
Ex 5.1, 3 (a)
Ex 5.1, 14
Ex 5.1, 16
Ex 5.1, 15 Important
Ex 5.1 ,7 Important
Ex 5.1, 25
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 29
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 26 Important
Ex 5.1, 30 Important
Example 15 Important
Checking continuity using LHL and RHL
Last updated at April 16, 2024 by Teachoo
Example 10 Discuss the continuity of the function f defined by π(π₯)={β(&π₯+2, ππ π₯β€1@&π₯β2, ππ π₯>1)β€ π(π₯)={β(&π₯+2, ππ π₯β€1@&π₯β2, ππ π₯>1)β€ Since we need to find continuity at of the function We check continuity for different values of x When x = 1 When x < 1 When x > 1Case 1 : When x = 1 f(x) is continuous at π₯ =1 if L.H.L = R.H.L = π(1) if limβ¬(xβ1^β ) π(π₯)=limβ¬(xβ1^+ ) " " π(π₯)= π(1) Since there are two different functions on the left & right of 1, we take LHL & RHL . LHL at x β 1 limβ¬(xβ1^β ) f(x) = limβ¬(hβ0) f(1 β h) = limβ¬(hβ0) (1ββ)+2 = limβ¬(hβ0) (3ββ) = 3 β 0 = 3 RHL at x β 1 limβ¬(xβ1^+ ) f(x) = limβ¬(hβ0) f(1 + h) = limβ¬(hβ0) (1+β)β2 = limβ¬(hβ0) (β1+β) = β1 + 0 = β1 Since L.H.L β R.H.L f(x) is not continuous at x = 1 Case 2 : When x < 1 For x < 1, f(x) = x + 2 Since this a polynomial It is continuous β΄ f(x) is continuous for x < 1 Case 3 : When x > 1 For x > 1, f(x) = x β 2 Since this a polynomial It is continuous β΄ f(x) is continuous for x > 1 Hence, only π₯=1 is point of discontinuity. β΄ f is continuous at all real numbers except 1 Thus, f is continuous for πβ R β {1}