Checking continuity using LHL and RHL
Example 10
Example 13 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1 ,6
Ex 5.1, 13
Ex 5.1, 12 Important
Example 11 Important
Example 7
Ex 5.1, 3 (a)
Ex 5.1, 14
Ex 5.1, 16
Ex 5.1, 15 Important
Ex 5.1 ,7 Important
Ex 5.1, 25
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 29
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 26 Important
Ex 5.1, 30 Important You are here
Example 15 Important
Checking continuity using LHL and RHL
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.1, 30 Find the values of a and b such that the function defined by π(π₯)={β(5, ππ π₯β€2@ππ₯+π, ππ 2<π₯<10@21, ππ π₯β₯10)β€ is a continuous function Since f(x) is a continuous function, It will be continuous for all values of x At x = 2 A function is continuous at x = 2 if L.H.L = R.H.L = π(2) i.e. limβ¬(xβ2^β ) π(π₯)=limβ¬(xβ2^+ ) " " π(π₯)= π(2) LHL at x β 2 (πππ)β¬(π₯β2^β ) f(x) = (πππ)β¬(ββ0) f(2 β h) = limβ¬(hβ0) 5 = 5 RHL at x β 2 (πππ)β¬(π₯β2^+ ) f(x) = (πππ)β¬(ββ0) f(2 + h) = limβ¬(hβ0) a(2 + h) + b = a(2 + 0) + b = 2a + b Since, LHL = RHL 2a + b = 5 At x = 10 π is continuous at x = 10 if L.H.L = R.H.L = π(10) i.e. limβ¬(xβ10^β ) π(π₯)=limβ¬(xβ10^+ ) " " π(π₯)= π(10) LHL at x β 10 (πππ)β¬(π₯β10^β ) f(x) = (πππ)β¬(ββ0) f(10 β h) = limβ¬(hβ0) a(10 β h) + b = a(10 β 0) + b = 10a + b RHL at x β 10 (πππ)β¬(π₯β10^+ ) f(x) = (πππ)β¬(ββ0) f(10 + h) = limβ¬(hβ0) 21 = 21 Since, L.H.L = R.H.L 10a + b = 21 Now, our equations are 2a + b = 5 β¦(1) 10a + b = 21 β¦(2) From (1) 2a + b = 5 b = 5 β 2a Putting value of b in (2) 10π+(5β2π) = 21 10π+5β2π = 21 8π = 21β5 8π = 16 π = 16/8 π = π Putting value of a in (1) 2π+π=5 2(2)+π=5 4+π=5 π=5β4 π=π Hence, a = 2 & b = 1