Checking continuity using LHL and RHL
Example 10
Example 13 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1 ,6
Ex 5.1, 13
Ex 5.1, 12 Important
Example 11 Important
Example 7
Ex 5.1, 3 (a)
Ex 5.1, 14
Ex 5.1, 16
Ex 5.1, 15 Important
Ex 5.1 ,7 Important
Ex 5.1, 25
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 29
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 26 Important You are here
Ex 5.1, 30 Important
Example 15 Important
Checking continuity using LHL and RHL
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Ex 5.1, 26 Find the values of k so that the function f is continuous at the indicated point π(π₯)={β((π cosβ‘π₯)/(π β 2π₯ ) , ππ π₯β π/2@& 3, ππ π₯=π/2)β€ at π₯ = π/2 Given that function is continuous at π₯ =π/2 π is continuous at =π/2 if L.H.L = R.H.L = π(π/2) i.e. limβ¬(xβγπ/2γ^β ) π(π₯)=limβ¬(xβγπ/2γ^+ ) " " π(π₯)= π(π/2) LHL at x β π /π (πππ)β¬(π₯βγπ/2γ^β ) π(π₯) = (πππ)β¬(ββ0) π(π/2ββ) = limβ¬(hβ0) (π cosβ‘(π/2 β β))/(π β 2(π/2 β β) ) = limβ¬(hβ0) (π sinβ‘β)/(π β π + 2β ) = limβ¬(hβ0) (π sinβ‘β)/(2β ) = k/2 (πππ)β¬(π‘βπ) π¬π’π§β‘π/(π ) = π/2 Γ 1 = π/π RHL at x β π /π (πππ)β¬(π₯βγπ/2γ^+ ) π(π₯) = (πππ)β¬(ββ0) π(π/2+β) = limβ¬(hβ0) (π cosβ‘(π/2 + β))/(π β 2(π/2 + β) ) = limβ¬(hβ0) (π γ(βsinγβ‘β))/(π β π β 2β ) = limβ¬(hβ0) (βπ sinβ‘β)/(β2β ) = k/2 (πππ)β¬(π‘βπ) πππβ‘π/(π ) = π/2 Γ 1 = π/2 And π(π/2) = 3 Now, L.H.L = R.H.L = π(π/2) π/2 = π/2 = 3 Hence, π/2 = 3 k = 3 Γ 2 k = 6 Hence, k = 6