Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important You are here
Question 1 Important
Last updated at Dec. 16, 2024 by Teachoo
Misc 23 If 𝑦=𝑒^(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥) , – 1 ≤ 𝑥 ≤ 1, show that (1−𝑥^2 ) (𝑑^2 𝑦)/〖𝑑𝑥〗^2 −𝑥 𝑑𝑦/𝑑𝑥 − 𝑎2 𝑦 =0 . 𝑦=𝑒^(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥) Differentiating 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦/𝑑𝑥 = 𝑑(𝑒^(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥" " ) )/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑒^(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥" " ) × 𝑑(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥)/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑒^(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥" " ) × 𝑎 ((−1)/√(1 − 𝑥^2 )) 𝑑𝑦/𝑑𝑥 = (−𝑎 𝑒^(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥" " ))/√(1 − 𝑥^2 ) √(1 − 𝑥^2 ) 𝑑𝑦/𝑑𝑥 = −𝑎𝑒^(〖𝑎 𝑐𝑜𝑠〗^(−1) 𝑥" " ) √(1 − 𝑥^2 ) 𝑑𝑦/𝑑𝑥 = −𝑎𝑦 Since we need to prove (1−𝑥^2 ) (𝑑^2 𝑦)/〖𝑑𝑥〗^2 − 𝑥 𝑑𝑦/𝑑𝑥 −𝑎2 𝑦 =0 Squaring (1) both sides (√(1 − 𝑥^2 ) 𝑑𝑦/𝑑𝑥)^2 = (−𝑎𝑦)^2 (1−𝑥^2 ) (𝑦^′ )^2 = 𝑎^2 𝑦^2 Differentiating again w.r.t x 𝑑((1 − 𝑥^2 ) (𝑦^′ )^2 )/𝑑𝑥 = (d(𝑎^2 𝑦^2))/𝑑𝑥 𝑑((1 − 𝑥^2 ) (𝑦^′ )^2 )/𝑑𝑥 = 𝑎^2 (𝑑(𝑦^2))/𝑑𝑥 𝑑((1 − 𝑥^2 ) (𝑦^′ )^2 )/𝑑𝑥 = 𝑎^2 × 2𝑦 ×𝑑𝑦/𝑑𝑥 𝑑(1 − 𝑥^2 )/𝑑𝑥 (𝑦^′ )^2+(1 − 𝑥^2 ) 𝒅((𝒚^′ )^𝟐 )/𝒅𝒙 = 𝑎^2 × 2𝑦𝑦^′ (−2𝑥)(𝑦^′ )^2+(1 − 𝑥^2 )(𝟐𝒚^′ × 𝒅(𝒚^′ )/𝒅𝒙) = 𝑎^2 × 2𝑦𝑦^′ (−2𝑥)(𝑦^′ )^2+(1 − 𝑥^2 )(𝟐𝒚^′ × 𝒚^′′ ) = 𝑎^2 × 2𝑦𝑦^′ Dividing both sides by 𝟐𝒚^′ −𝑥𝑦^′+(1 − 𝑥^2 ) 𝑦^′′ = 𝑎^2 × 𝑦 −𝑥𝑦^′+(1 − 𝑥^2 ) 𝑦^′′ = 𝑎^2 𝑦 (𝟏 − 𝒙^𝟐 ) 𝒚^′′−𝒙𝒚^′−𝒂^𝟐 𝒚=𝟎 Hence proved