Slide27.JPG

Slide28.JPG
Slide29.JPG

Slide30.JPG

Slide31.JPG

Go Ad-free

Transcript

Misc 21 (Method 1) If 𝑦 = |█( 𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 Here 𝑑𝑦/𝑑𝑥 = |█( 𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| Expanding determinant 𝑑𝑦/𝑑𝑥 = |𝑓′(𝑥)| |■8(𝑚&𝑛@𝑏&𝑐)||−𝑔′(𝑥) | |■8(𝑙&𝑛@𝑎&𝑐)||1+ ℎ′(𝑥) ||■8(𝑙&𝑚@𝑎&𝑏)| 𝑑𝑦/𝑑𝑥 = 𝑓′(𝑥) (𝑚𝑐 −𝑏𝑛)−𝑔′(𝑛) (𝑙𝑐−𝑎𝑛) + ℎ′(𝑛) (𝑙𝑏−𝑎𝑚) 𝑑𝑦/𝑑𝑥 = (𝑚𝑐 −𝑏𝑛) 𝑓′(𝑥)−(𝑙𝑐−𝑎𝑛)𝑔′(𝑥) +(𝑙𝑏−𝑎𝑚) ℎ′(𝑥) Hence We need to prove that 𝒅𝒚/𝒅𝒙 = (𝑚𝑐 −𝑏𝑛) 𝑓′(𝑥)−(𝑙𝑐−𝑎𝑛)𝑔′(𝑥) +(𝑙𝑏−𝑎𝑚) ℎ′(𝑥) Now, 𝑦 = |█( 𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| Expanding determinant 𝑦 = 𝑓(𝑥)|■8(𝑚&𝑛@𝑏&𝑐)|− 𝑔(𝑥)|■8(𝑙&𝑛@𝑎&𝑐)|+ ℎ(𝑥)|■8(𝑙&𝑚@𝑎&𝑏)| 𝑦 = 𝑓(𝑥) (𝑚𝑐 −𝑏𝑛)−𝑔(𝑛) (𝑙𝑐−𝑎𝑛) + ℎ(𝑛) (𝑙𝑏−𝑎𝑚) 𝑦 = (𝑚𝑐 −𝑏𝑛) 𝑓(𝑥)−(𝑙𝑐−𝑎𝑛)𝑔(𝑥)" +" (𝑙𝑏−𝑎𝑚) ℎ(𝑥)" " Differentiating 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦/𝑑𝑥 = 𝑑((𝑚𝑐 − 𝑏𝑛) 𝑓(𝑥) − (𝑙𝑐 − 𝑎𝑛)𝑔(𝑥)" +" (𝑙𝑏 − 𝑎𝑚) ℎ(𝑥)" " )/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑑((𝑚𝑐 − 𝑏𝑛) 𝑓(𝑥))/𝑑𝑥 − 𝑑((𝑙𝑐 − 𝑎𝑛)𝑔(𝑥))/𝑑𝑥 + 𝑑((𝑙𝑏 − 𝑎𝑚) ℎ(𝑥))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = (𝑚𝑐−𝑏𝑛) 𝑑(𝑓(𝑥))/𝑑𝑥 − (𝑙𝑐−𝑎𝑛) 𝑑(𝑔(𝑥))/𝑑𝑥 + (𝑙𝑏−𝑎𝑚) 𝑑(ℎ(𝑥))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = (𝑚𝑐−𝑏𝑛) 𝑓′(𝑥)−(𝑙𝑐−𝑎𝑛) 𝑔′(𝑥) + (𝑙𝑏−𝑎𝑚) ℎ′(𝑥)" " Hence proved Misc 21 (Method 2) If 𝑦 = |█( 𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| , prove that 𝑑𝑦/𝑑𝑥 = |█( 𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| To Differentiate a determinant, We differentiate one row (or one column) at a time keeping others unchanged If 𝑦 = |█( 𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| 𝑑𝑦/𝑑𝑥 = |█( 𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| + |█(𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@(𝑙)^′ (𝑚)^′ (𝑛)^′@𝑎 𝑏 𝑐 )| + |█( 𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@𝑙 𝑚 𝑛@(𝑎)′ (𝑏)′ (𝑐)′ )| 𝑑𝑦/𝑑𝑥 = |█( 𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| + |█(𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@0 0 0 @𝑎 𝑏 𝑐 )| + |█( 𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)@𝑙 𝑚 𝑛@0 0 0 )| 𝑑𝑦/𝑑𝑥 = |█( 𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| + 0 + 0 𝑑𝑦/𝑑𝑥 = |█( 𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )| Hence proved. Using property If any one Row or column is 0 , then value of determinate is also 0 𝑐 )| , prove that 𝑑𝑦/𝑑𝑥 = |█( 𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)@𝑙 𝑚 𝑛@𝑎 𝑏 𝑐 )|

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo