Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19 You are here
Misc 20
Misc 21
Misc 22 Important
Question 1 Important
Last updated at April 16, 2024 by Teachoo
Misc 19 Using the fact that sinβ‘(π΄ + π΅)=sinβ‘π΄ cosβ‘π΅+cosβ‘π΄ sinβ‘π΅ and the differentiation, obtain the sum formula for cosines.Given sinβ‘(π΄ + π΅)=sinβ‘π΄ cosβ‘π΅+cosβ‘π΄ sinβ‘π΅ Consider A & B are function of π₯ Differentiating both side π€.π.π‘.π₯. π(sinβ‘(π΄ + π΅) )/ππ₯ = π(sinβ‘π΄ cosβ‘π΅ + cosβ‘π΄ sinβ‘π΅)/ππ₯ π(sinβ‘(π΄ + π΅) )/ππ₯ = π(sinβ‘π΄ . cosβ‘π΅)/ππ₯ + π(cosβ‘γπ΄ γ. sinβ‘π΅)/ππ₯ cos (π΄+π΅) . π(π΄ + π΅)/ππ₯ = π(sinβ‘π΄ . cosβ‘π΅)/ππ₯ + π(cosβ‘γπ΄ γ. sinβ‘π΅)/ππ₯ πππ (π¨+π©) . (π π¨/π π + π π©/π π) = (π(sinβ‘π΄ )/ππ₯. cosβ‘π΅" +" π(cosβ‘π΅ )/ππ₯ " " π ππβ‘"A" ) + (π(cosβ‘π΄ )/ππ₯. π ππβ‘π΅" +" π(sinβ‘π΅ )/ππ₯ ". " π"os A" ) = cosβ‘π΄.ππ΄/ππ₯ ". cos B "βsinβ‘π΅.ππ΅/ππ₯ " " sinβ‘π΄ β sinβ‘π΄. ππ΄/ππ₯.sinβ‘π΅+cosβ‘π΅. ππ΅/ππ₯ ". " π"os A" = cosβ‘π΄.ππ΄/ππ₯ ". cos B "βsinβ‘π΄ .ππ΄/ππ₯ " " π ππβ‘"B" β sinβ‘π΅. ππ΅/ππ₯. π ππ π΄β‘"+ cos B" . ππ΅/ππ₯ ". " π"os A" = ππ΄/ππ₯ (cosβ‘π΄ cosβ‘π΅βsinβ‘π΄ sinβ‘π΅ ) + ππ΅/ππ₯ (βsinβ‘π΅ sinβ‘π΄+cosβ‘π΅ cosβ‘π΄ ) = (cosβ‘π΄ cosβ‘π΅βsinβ‘π΄ sinβ‘π΅ ) (ππ΄/ππ₯ + ππ΅/ππ₯) Thus, cos (π΄+π΅) . (ππ΄/ππ₯ + ππ΅/ππ₯) = (cosβ‘π΄ cosβ‘π΅βsinβ‘π΄ sinβ‘π΅ ) (ππ΄/ππ₯ + ππ΅/ππ₯) πππ" " (π¨+π©) = πππβ‘π¨ πππβ‘π©βπππβ‘π¨ πππβ‘π© Hence proved