Slide14.JPG

Slide15.JPG
Slide16.JPG

Go Ad-free

Transcript

Misc 19 Using the fact that sin⁑(𝐴 + 𝐡)=sin⁑𝐴 cos⁑𝐡+cos⁑𝐴 sin⁑𝐡 and the differentiation, obtain the sum formula for cosines.Given sin⁑(𝐴 + 𝐡)=sin⁑𝐴 cos⁑𝐡+cos⁑𝐴 sin⁑𝐡 Consider A & B are function of π‘₯ Differentiating both side 𝑀.π‘Ÿ.𝑑.π‘₯. 𝑑(sin⁑(𝐴 + 𝐡) )/𝑑π‘₯ = 𝑑(sin⁑𝐴 cos⁑𝐡 + cos⁑𝐴 sin⁑𝐡)/𝑑π‘₯ 𝑑(sin⁑(𝐴 + 𝐡) )/𝑑π‘₯ = 𝑑(sin⁑𝐴 . cos⁑𝐡)/𝑑π‘₯ + 𝑑(cos⁑〖𝐴 γ€—. sin⁑𝐡)/𝑑π‘₯ cos (𝐴+𝐡) . 𝑑(𝐴 + 𝐡)/𝑑π‘₯ = 𝑑(sin⁑𝐴 . cos⁑𝐡)/𝑑π‘₯ + 𝑑(cos⁑〖𝐴 γ€—. sin⁑𝐡)/𝑑π‘₯ 𝒄𝒐𝒔 (𝑨+𝑩) . (𝒅𝑨/𝒅𝒙 + 𝒅𝑩/𝒅𝒙) = (𝑑(sin⁑𝐴 )/𝑑π‘₯. cos⁑𝐡" +" 𝑑(cos⁑𝐡 )/𝑑π‘₯ " " 𝑠𝑖𝑛⁑"A" ) + (𝑑(cos⁑𝐴 )/𝑑π‘₯. 𝑠𝑖𝑛⁑𝐡" +" 𝑑(sin⁑𝐡 )/𝑑π‘₯ ". " 𝑐"os A" ) = cos⁑𝐴.𝑑𝐴/𝑑π‘₯ ". cos B "βˆ’sin⁑𝐡.𝑑𝐡/𝑑π‘₯ " " sin⁑𝐴 βˆ’ sin⁑𝐴. 𝑑𝐴/𝑑π‘₯.sin⁑𝐡+cos⁑𝐡. 𝑑𝐡/𝑑π‘₯ ". " 𝑐"os A" = cos⁑𝐴.𝑑𝐴/𝑑π‘₯ ". cos B "βˆ’sin⁑𝐴 .𝑑𝐴/𝑑π‘₯ " " 𝑠𝑖𝑛⁑"B" βˆ’ sin⁑𝐡. 𝑑𝐡/𝑑π‘₯. 𝑠𝑖𝑛 𝐴⁑"+ cos B" . 𝑑𝐡/𝑑π‘₯ ". " 𝑐"os A" = 𝑑𝐴/𝑑π‘₯ (cos⁑𝐴 cosβ‘π΅βˆ’sin⁑𝐴 sin⁑𝐡 ) + 𝑑𝐡/𝑑π‘₯ (βˆ’sin⁑𝐡 sin⁑𝐴+cos⁑𝐡 cos⁑𝐴 ) = (cos⁑𝐴 cosβ‘π΅βˆ’sin⁑𝐴 sin⁑𝐡 ) (𝑑𝐴/𝑑π‘₯ + 𝑑𝐡/𝑑π‘₯) Thus, cos (𝐴+𝐡) . (𝑑𝐴/𝑑π‘₯ + 𝑑𝐡/𝑑π‘₯) = (cos⁑𝐴 cosβ‘π΅βˆ’sin⁑𝐴 sin⁑𝐡 ) (𝑑𝐴/𝑑π‘₯ + 𝑑𝐡/𝑑π‘₯) 𝒄𝒐𝒔" " (𝑨+𝑩) = 𝒄𝒐𝒔⁑𝑨 π’„π’π’”β‘π‘©βˆ’π’”π’Šπ’β‘π‘¨ π’”π’Šπ’β‘π‘© Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo