Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important You are here
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important
Last updated at April 16, 2024 by Teachoo
Misc 17 If π₯=π (cosβ‘π‘ + π‘ sinβ‘π‘) and y=π (sinβ‘π‘ β π‘ cosβ‘π‘), Find (π^2 π¦)/γππ₯γ^We need to find (π^2 π¦)/γππ₯γ^2 First we find π π/π π Here, ππ¦/ππ₯ = (ππ¦/ππ‘)/(ππ₯/ππ‘) Calculating π π/π π π¦=π (sinβ‘π‘β π‘ cosβ‘π‘ ) Differentiating π€.π.π‘. t ππ¦/ππ‘ = π(π (sinβ‘π‘β π‘ cosβ‘π‘ ))/ππ‘ ππ¦/ππ‘ = π π(sinβ‘π‘β π‘ cosβ‘π‘ )/ππ‘ ππ¦/ππ‘ = π (π(sinβ‘π‘ )/ππ‘ β π(π‘ cosβ‘π‘ )/ππ‘) ππ¦/ππ‘ = π (cosβ‘π‘β π(π‘ cosβ‘π‘ )/ππ‘) ππ¦/ππ‘ = π (cosβ‘π‘ β(ππ‘/ππ‘ . cosβ‘π‘+ (π cosβ‘π‘)/ππ‘ . π‘ )) Using Product rule As (π’π£)β = π’βπ£ + π£βπ’ ππ¦/ππ‘ = π (cosβ‘π‘ β(cosβ‘π‘+(γβsinγβ‘π‘ ) . π‘)) ππ¦/ππ‘ = π (cosβ‘π‘ β(cosβ‘π‘β(sinβ‘π‘ ) . π‘)) ππ¦/ππ‘ = π (cosβ‘π‘ βcosβ‘π‘+π‘ .sinβ‘π‘ ) ππ¦/ππ‘ = π (0+π‘ sinβ‘π‘ ) π π/π π = π .π.πππβ‘π Calculating π π/π π π₯=π (cosβ‘π‘+ π‘ sinβ‘π‘ ) Differentiating π€.π.π‘. t ππ₯/ππ‘ = π(π (cosβ‘π‘ + π‘ sinβ‘π‘)" " )/ππ‘ ππ₯/ππ‘ = π (π(cosβ‘π‘ + π‘ sinβ‘π‘)/ππ‘) ππ₯/ππ‘ = π (π(cosβ‘π‘)/ππ‘ + π(π‘ sinβ‘π‘)/ππ‘) ππ₯/ππ‘ = π (γβsinγβ‘π‘ + π(π‘ sinβ‘π‘ )/ππ‘) Using product rule As (π’π£)β = π’βπ£ + π£βπ’ ππ₯/ππ‘ = π (γβsinγβ‘π‘+(ππ‘/ππ‘ . sinβ‘π‘+ π(sinβ‘π‘ )/ππ‘ . π‘ )) ππ₯/ππ‘ = π (γβsinγβ‘π‘+(sinβ‘π‘+cosβ‘π‘ . π‘)) ππ₯/ππ‘= π (βsinβ‘π‘+sinβ‘π‘+π‘ .cππ β‘π‘ ) π π/π π = π .π.πππβ‘π Finding π π/π π π π/π π = (π π/π π)/(π π/π π) ππ¦/ππ₯ = (π" " .π‘.sinβ‘π‘)/(π" " .π‘.cosβ‘π‘ ) π π/π π = πππβ‘π Again Differentiating π€.π.π‘.π₯. π /π π (π π/π π) = π (πππβ‘π)/π π (π^2 π¦)/(ππ₯^2 ) = π(tanβ‘π‘)/ππ₯ (π^2 π¦)/(ππ₯^2 ) = π(tanβ‘π‘)/ππ₯ . ππ‘/ππ‘ (π^2 π¦)/(ππ₯^2 ) =sec^2β‘π‘ . ππ‘/ππ₯ (π^2 π¦)/(ππ₯^2 ) =sec^2β‘π‘ Γ· π π/π π (π^2 π¦)/(ππ₯^2 ) = sec^2β‘π‘ Γ· π.π.ππππ (π^2 π¦)/(ππ₯^2 ) = (sec^2β‘π‘ )/(π" " . π‘.cosβ‘π‘ ) "We have calculated" π π/π π " = " π" ".π‘.πππ β‘π‘ (π^2 π¦)/(ππ₯^2 ) = (sec^2β‘π‘ )/(π" " . π‘ Γ 1/secβ‘π‘ ) (π ^π π)/(π π^π ) = (γπππγ^πβ‘π )/(π" " . π) 2