Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important You are here
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important
Last updated at Dec. 16, 2024 by Teachoo
Misc 16 If cosβ‘π¦=π₯ cosβ‘(π + π¦), with cosβ‘π β Β± 1, prove that ππ¦/ππ₯ = (γπππ γ^2 (π + π¦))/sinβ‘γπ γ Given cosβ‘π¦ = π₯ cosβ‘(π + π¦) cosβ‘π¦/(cosβ‘(π + π¦)) = π₯ π = πππβ‘π/(πππβ‘(π + π)) Differentiating π€.π.π‘.π₯. π(π₯)/ππ₯ = π/ππ₯ (cosβ‘π¦/cosβ‘(π + π¦) ) 1 = π/ππ₯ (cosβ‘π¦/cosβ‘(π + π¦) ) . ππ¦/ππ¦ 1 = π/ππ¦ (cosβ‘π¦/cosβ‘(π + π¦) ) . ππ¦/ππ₯ 1 = ((π(cosβ‘π¦ )/ππ¦ . γ cosγβ‘(π + π¦) β π(γ cosγβ‘(π + π¦) )/ππ¦ . cosβ‘π¦)/(cosβ‘(π + π¦) )^2 ) . ππ¦/ππ₯ 1 = ((βsinβ‘π¦ . γ cosγβ‘(π + π¦) β(γβsin γβ‘(π + π¦) ) π(π + π¦)/ππ¦ . cosβ‘π¦)/γcos^2 γβ‘(π + π¦) ) . ππ¦/ππ₯ Using quotient rule As (π’/π£)β² = (π’^β² π£ β π£^β² π’)/π£^2 where u = cos y & v = cos (π + y) 1 = ((βsinβ‘π¦ . γ cosγβ‘(π + π¦) + γsin γβ‘(π + π¦) (0 + 1) . cosβ‘π¦)/γcos^2 γβ‘(π + π¦) ) . ππ¦/ππ₯ 1 = ((sinβ‘(π + π¦) . γ cosγβ‘π¦ β γcos γβ‘(π + π¦) . sinβ‘π¦)/γcos^2 γβ‘(π + π¦) ) . ππ¦/ππ₯ 1 = πππβ‘((π + π) β π)/γcos^2 γβ‘(π + π¦) . ππ¦/ππ₯ 1 = sinβ‘(π)/γcos^2 γβ‘(π + π¦) . ππ¦/ππ₯ γcos^2 γβ‘(π + π¦)/sinβ‘(π) = ππ¦/ππ₯ π π/π π = γγπππγ^π γβ‘(π + π)/πππβ‘(π) We know that πππβ‘(π βπ)=π ππβ‘π₯ γ πππ γβ‘π¦βγπππ γβ‘π₯ . π ππβ‘π¦