Slide20.JPG Slide21.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Misc 13 Find 𝑑𝑦/𝑑π‘₯ , if 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) π‘₯+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’π‘₯2), – 1 ≀ π‘₯ ≀ 1 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) π‘₯+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’π‘₯^2 ) , – 1 ≀ π‘₯ ≀ 1 Putting 𝒙 = π’”π’Šπ’β‘πœ½ 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) (sinβ‘πœƒ)+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’sin^2 πœƒ ) 𝑦=𝜽+〖𝑠𝑖𝑛〗^(βˆ’1) √(γ€–πœπ¨π¬γ€—^𝟐 πœƒ ) 𝑦=πœƒ+〖𝑠𝑖𝑛〗^(βˆ’1) (cos πœƒ) 𝑦=πœƒ+〖𝑠𝑖𝑛〗^(βˆ’1) (sin⁑(𝝅/𝟐 βˆ’πœ½) ) 𝑦=πœƒ+ (πœ‹/2 βˆ’πœƒ) 𝑦=πœƒβˆ’πœƒ + πœ‹/2 π’š= 𝝅/𝟐 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯. 𝑑𝑦/𝑑π‘₯ = 𝑑(πœ‹/2)/𝑑π‘₯ π’…π’š/𝒅𝒙 = 0

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo