Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 You are here
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important
Last updated at April 16, 2024 by Teachoo
Misc 12 Find ππ¦/ππ₯, if π¦=12 (1 βcosβ‘π‘ ), π₯=10 (π‘ βsinβ‘π‘ ),βπ/2 " "<π₯< π/2 Here, ππ¦/ππ₯ = (ππ¦/ππ‘)/(ππ₯/ππ‘) Calculating π π/π π π¦=12 (1 βcosβ‘π‘ ) π¦=12 β12 cosβ‘π‘ Differentiating π€.π.π‘.π₯. ππ¦/ππ‘ = π(12 β 12 cosβ‘π‘ )/ππ‘ ππ¦/ππ‘ = π(12)/ππ‘ β 12 π(cosβ‘π‘ )/ππ‘ ππ¦/ππ‘ = 0 β 12 (βsinβ‘π‘ ) π π/π π = ππ π¬π’π§β‘π Calculating π π/π π π₯=10 (π‘ βsinβ‘π‘ ) π₯=10π‘ β10 sinβ‘π‘ Differentiating π€.π.π‘.π₯. ππ₯/ππ‘ = π(10 β 10 sinβ‘π‘ )/ππ‘ π/ππ‘ (10t β 10 sint) ππ₯/ππ‘ = π(10 π‘)/ππ‘ β π(10 sinβ‘π‘ )/ππ‘ ππ₯/ππ‘ = 10β10 cosβ‘π‘ π π/π π = ππ(πβπππβ‘π ) Therefore ππ¦/ππ₯ = (ππ¦/ππ‘)/(ππ₯/ππ‘) ππ¦/ππ₯ = (12 sinβ‘π‘)/10(1 βγ cosγβ‘π‘ ) ππ¦/ππ₯ = (6 πππβ‘π)/(5 (π βγ πππγβ‘π ) ) ππ¦/ππ₯ = (6 . π γπ¬π’π§ γβ‘γπ/πγ πππβ‘γ π/πγ)/(5 (π γπππγ^πβ‘γπ/πγ ) ) ππ¦/ππ₯ = (6 cosβ‘γ π‘/2γ)/(5 γsin γβ‘γπ‘/2γ ) π π/π π = π/π πππ π/π We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by π/2 sin ΞΈ = 2 πππβ‘γπ½/πγ πππβ‘γπ½/πγ and cos 2ΞΈ = 1 β 2sin2 ΞΈ Replacing ΞΈ by π/2 cos ΞΈ = 1 β 2sin2 π/2 1 β cos ΞΈ = 2sin2 π½/π