Miscellaneous
Misc 2
Misc 3
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9 Important You are here
Misc 10
Misc 11 Important
Misc 12
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18
Misc 19
Misc 20
Misc 21
Misc 22 Important
Question 1 Important
Last updated at Dec. 16, 2024 by Teachoo
Misc 9 Differentiate w.r.t. x the function, (sinβ‘π₯βcosβ‘π₯ )^((sinβ‘γπ₯βcosβ‘γπ₯)γ γ ), π/4 <π₯< 3π/4 Let y = (sinβ‘π₯βcosβ‘π₯ )^((sinβ‘γπ₯βcosβ‘γπ₯)γ γ ) Taking log on both sides logβ‘π¦ = log (sinβ‘π₯βcosβ‘π₯ )^((sinβ‘γπ₯βcosβ‘γπ₯)γ γ ) logβ‘π¦ = (sinβ‘π₯βcosβ‘π₯ ). γ logγβ‘γ (sinβ‘π₯βcosβ‘π₯ )γ Differentiating both sides π€.π.π‘.π₯. π(logβ‘π¦ )/ππ₯ = π((sinβ‘π₯ β cosβ‘π₯ ). γ logγβ‘(sinβ‘π₯ β cosβ‘π₯ ) )/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ¦) = π((sinβ‘π₯βcosβ‘π₯ ). γ logγβ‘γ (sinβ‘π₯βcosβ‘π₯ )γ )/ππ₯ π(logβ‘π¦ )/ππ¦ (ππ¦/ππ₯) = π((sinβ‘π₯βcosβ‘π₯ ). γ logγβ‘γ (sinβ‘π₯βcosβ‘π₯ )γ )/ππ₯ 1/π¦ . ππ¦/ππ₯ = π((sinβ‘π₯βcosβ‘π₯ ). γ logγβ‘γ (sinβ‘π₯βcosβ‘π₯ )γ " " )/ππ₯ " " 1/π¦. ππ¦/ππ₯ = π(sinβ‘π₯ β cosβ‘π₯ )/ππ₯ . γ log γβ‘(sinβ‘π₯βcosβ‘π₯ ) + π(γ logγβ‘γ (sinβ‘π₯ β cosβ‘π₯ )γ )/ππ₯ .(sinβ‘π₯βcosβ‘π₯ ) 1/π¦ . ππ¦/ππ₯ = (cosβ‘π₯β(βsinβ‘π₯ )). logβ‘γ (sinβ‘π₯βγ cosγβ‘π₯ )γ + 1/((sinβ‘π₯ β cosβ‘π₯ ) ) . π(sinβ‘π₯ β cosβ‘π₯ )/ππ₯ . (sinβ‘π₯βγ cosγβ‘π₯ ) 1/π¦ . ππ¦/ππ₯ = (cosβ‘π₯+sinβ‘π₯ ) . logβ‘γ (sinβ‘π₯βcosβ‘π₯ )γ + 1/((sinβ‘π₯βcosβ‘π₯ ) ) . (cosβ‘π₯β(βsinβ‘π₯ )) . (sinβ‘π₯βcosβ‘π₯ ) Using product rule (π’π£)β = π’βπ£ + π£βπ’ where u = sin x β cos x & v = log (sin x β cos x) 1/π¦ . ππ¦/ππ₯ = (cosβ‘π₯+sinβ‘π₯ ) . logβ‘γ (sinβ‘π₯βcosβ‘π₯ )γ + 1/((sinβ‘π₯βcosβ‘π₯ ) ) . (cosβ‘π₯+sinβ‘π₯ ) . (sinβ‘π₯βcosβ‘π₯ ) 1/π¦ . ππ¦/ππ₯ = (cosβ‘π₯+sinβ‘π₯ ) . logβ‘γ (sinβ‘π₯βcosβ‘π₯ )γ + (cosβ‘π₯+sinβ‘π₯ ) 1/π¦ . ππ¦/ππ₯ = (cosβ‘π₯+sinβ‘π₯ ) . (logβ‘γ (sinβ‘π₯βcosβ‘π₯ )+1γ ) ππ¦/ππ₯ = π¦(cosβ‘π₯+sinβ‘π₯ ) . (logβ‘γ (sinβ‘π₯βcosβ‘π₯ )+1γ ) π π/π π = (πππβ‘πβπππβ‘π )^((πππβ‘γπβπππβ‘γπ)γ γ ) (πππβ‘π+πππβ‘π )(πππβ‘γ (πππβ‘πβπππβ‘π )+πγ )