Slide10.JPG

Slide11.JPG
Slide12.JPG

Go Ad-free

Transcript

Misc 5 Differentiate 𝑤.𝑟.𝑡. 𝑥 the function, (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 ) , – 2 < 𝑥 < 2 Let 𝑦= (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 ) Differentiating both sides 𝑤.𝑟.𝑡. 𝑥 𝑑𝑦/𝑑𝑥 = 𝑑/𝑑𝑥 ((〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/√(2𝑥+7 )) Using Quotient rule As (𝑢/𝑣)^′ = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 where u = cos−1 𝑥/2 & v = √(2𝑥+7) 𝑑𝑦/𝑑𝑥 = (𝑑(〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2)/𝑑𝑥 . √(2𝑥 + 7 ) − 𝑑(√(2𝑥 + 7 ))/𝑑𝑥 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/(√(2𝑥 + 7 ))^2 𝑑𝑦/𝑑𝑥 = ((−1)/√(1 −(𝑥/2)^2 ) . 𝑑(𝑥/2)/𝑑𝑥 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . 𝑑(2𝑥 + 7)/𝑑𝑥 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/(√(2𝑥 + 7 ))^2 𝑑𝑦/𝑑𝑥 = ((−1)/√(〖(4 − 𝑥)/4〗^2 ) . 1/2 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . (2 + 0) . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = ((−2)/√(〖4 − 𝑥〗^2 ) . 1/2 √(2𝑥 + 7 ) − 1/(2√(2𝑥 + 7)) . 2 . 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = ((− √(𝟐𝒙 + 𝟕 ))/( √(〖𝟒 − 𝒙〗^𝟐 )) − (. 〖𝒄𝒐𝒔〗^(−𝟏 ) 𝒙/𝟐)/√(𝟐𝒙 + 𝟕) )/((2𝑥 + 7) ) 𝑑𝑦/𝑑𝑥 = (− √(2𝑥 + 7 ) ( √(2𝑥 + 7 )) − 〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 √(〖4 − 𝑥〗^2 ))/((2𝑥 + 7) (√(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) 𝑑𝑦/𝑑𝑥 = 〖−(√(2𝑥 + 7 ))〗^2/((2𝑥 + 7) ( √(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) "+ " (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 √(〖4 − 𝑥〗^2 ))/((2𝑥 + 7) ( √(2𝑥 + 7 )) (√(〖4 − 𝑥〗^2 )) ) 𝑑𝑦/𝑑𝑥 = (−(2𝑥 + 7))/((2𝑥 + 7) √(2𝑥 + 7 ) √(〖4 − 𝑥〗^2 )) "+ " (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) √(2𝑥 + 7 ) ) 𝑑𝑦/𝑑𝑥 = (−1)/(√(2𝑥 + 7 ) √(〖4 − 𝑥〗^2 )) "+ " (〖𝑐𝑜𝑠〗^(−1 ) 𝑥/2 )/((2𝑥 + 7) (2𝑥 + 7)^(1/2) ) 𝒅𝒚/𝒅𝒙 = (−𝟏)/(√(𝟐𝒙 + 𝟕) √(〖𝟒 − 𝒙〗^𝟐 ))−(〖𝒄𝒐𝒔〗^(−𝟏 ) 𝒙/𝟐 )/((𝟐𝒙 + 𝟕)^(𝟑/𝟐) )

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo