Ex 5.6, 7 - Find dy/dx, x = sin^3 t / root (cos 2t), y = cos^3 t /

Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 3
Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 4
Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 5 Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 6 Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 7 Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 8 Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 9 Ex 5.6, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 10

Go Ad-free

Transcript

Ex 5.6, 7 If x and y are connected parametrically by the equations without eliminating the parameter, Find 𝑑𝑦/𝑑π‘₯, π‘₯ =(〖𝑠𝑖𝑛〗^3 𝑑)/√(cos⁑2𝑑 ) , 𝑦 = (γ€–π‘π‘œπ‘ γ€—^3 𝑑)/√(cos⁑2𝑑 )Here, 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/𝑑𝑑)/(𝑑π‘₯/𝑑𝑑) Calculating π’…π’š/𝒅𝒕 𝑦 = (γ€–π‘π‘œπ‘ γ€—^3 𝑑)/√(cos⁑2𝑑 ) 𝑑𝑦/𝑑𝑑 " " = 𝑑/𝑑𝑑 ((γ€–π‘π‘œπ‘ γ€—^3 𝑑)/√(cos⁑2𝑑 )) 𝑑𝑦/𝑑𝑑 " " = (𝑑(γ€–π‘π‘œπ‘ γ€—^3 𝑑)/𝑑𝑑 . √(cos⁑2 𝑑) βˆ’ 𝑑(√(cos⁑2𝑑 ))/𝑑𝑑 .γ€– cos^3〗⁑𝑑)/(√(cos⁑2 𝑑))^2 𝑑𝑦/𝑑𝑑 " = " (3 cos^2⁑〖𝑑 γ€—. 𝑑(cos⁑𝑑 )/𝑑𝑑. √(cos⁑2 𝑑) βˆ’ 1/(2√(cos⁑2𝑑 )) . 𝑑(cos⁑2𝑑 )/𝑑𝑑 .γ€– cos^3〗⁑𝑑)/(√(cos⁑2 𝑑))^2 Using quotient rule As (𝑒/𝑣)^β€² = (𝑒^β€² 𝑣 βˆ’ 𝑣^β€² 𝑒)/𝑣^2 𝑑𝑦/𝑑𝑑 " = " (3 cos^2⁑〖𝑑 γ€—. (βˆ’sin⁑𝑑 ) . √(cos⁑2 𝑑) βˆ’ 1/(2√(cos⁑2𝑑 )) . (βˆ’2 sin⁑2𝑑) .γ€– cos^3〗⁑𝑑)/(√(cos⁑2 𝑑))^2 𝑑𝑦/𝑑𝑑 " =" (βˆ’3 cos^2⁑〖𝑑 γ€— sin⁑𝑑 √(cos⁑2 𝑑) + 1/√(cos⁑2𝑑 ) . sin⁑2𝑑 .γ€– cos^3〗⁑𝑑)/(√(cos⁑2 𝑑))^2 𝑑𝑦/𝑑𝑑 " =" ((βˆ’3 cos^2⁑〖𝑑 γ€— sin⁑𝑑 √(cos⁑2 𝑑) Γ— √(cos⁑2𝑑 ) + sin⁑2𝑑 .γ€– cos^3〗⁑𝑑)/√(cos⁑2𝑑 ))/(√(cos⁑2 𝑑))^2 𝑑𝑦/𝑑𝑑 " =" (βˆ’3 cos^2⁑〖𝑑 γ€— sin⁑𝑑 (cos⁑2 𝑑) + sin⁑2𝑑 .γ€– cos^3〗⁑𝑑)/((√(cos⁑2 𝑑))^2 (√(cos⁑2 𝑑)) ) 𝑑𝑦/𝑑𝑑 " =" ( cos^2⁑𝑑 (βˆ’3 sin⁑𝑑 .cos⁑2𝑑 +γ€– cos〗⁑𝑑 . sin⁑2𝑑 ))/((cos⁑2 𝑑)^(3/2) ) Calculating 𝒅𝒙/𝒅𝒕 π‘₯ = (〖𝑠𝑖𝑛〗^3 𝑑)/√(cos⁑2𝑑 ) 𝑑π‘₯/𝑑𝑑 = 𝑑/𝑑π‘₯ ((〖𝑠𝑖𝑛〗^3 𝑑)/√(cos⁑2𝑑 )) 𝑑π‘₯/𝑑𝑑 = (𝑑(〖𝑠𝑖𝑛〗^3 𝑑)/𝑑𝑑 . √(cos⁑2𝑑 ) βˆ’ (𝑑(√(cos⁑2𝑑 )) )/𝑑π‘₯ . γ€– 𝑠𝑖𝑛〗^3 𝑑 )/(√(cos⁑2𝑑 ))^2 𝑑π‘₯/𝑑𝑑 = (3 〖𝑠𝑖𝑛〗^2 𝑑 . (𝑑(sin⁑𝑑 ) )/𝑑𝑑 . √(cos⁑2𝑑 ) βˆ’ 1/(2√(cos⁑2𝑑 )) . (𝑑(cos⁑2𝑑 ) )/𝑑π‘₯ . γ€– 𝑠𝑖𝑛〗^3 𝑑 )/(√(cos⁑2𝑑 ))^2 𝑑π‘₯/𝑑𝑑 = (3 〖𝑠𝑖𝑛〗^2 𝑑 . cos⁑𝑑 . √(cos⁑〖2 𝑑〗 ) βˆ’ 1/(2√(cos⁑〖2 𝑑〗 )) . (βˆ’sin⁑2𝑑 ) . 2 . γ€– 𝑠𝑖𝑛〗^3 𝑑 )/((cos⁑〖2 𝑑〗 ) ) 𝑑π‘₯/𝑑𝑑 = (3 〖𝑠𝑖𝑛〗^2 𝑑 . cos⁑𝑑 . (√(cos⁑2𝑑 )) . (√(cos⁑2𝑑 )) + sin⁑2𝑑 . γ€– 𝑠𝑖𝑛〗^3 𝑑 )/((√(cos⁑2𝑑 )) (cos⁑2𝑑 ) ) 𝑑π‘₯/𝑑𝑑 = (3 〖𝑠𝑖𝑛〗^2 𝑑 . cos⁑𝑑 . cos⁑2𝑑 + sin⁑2𝑑 . γ€– 𝑠𝑖𝑛〗^3 𝑑 )/(cos⁑2𝑑 )^(3/2) 𝑑π‘₯/𝑑𝑑 = (〖𝑠𝑖𝑛〗^2 𝑑 (3 cos⁑𝑑 . cos⁑2𝑑 + sin⁑2𝑑 . sin⁑𝑑 ) )/(cos⁑2𝑑 )^(3/2) Finding π’…π’š/𝒅𝒙 π’…π’š/𝒅𝒙 = ((cos^2⁑𝑑 (βˆ’3 sin⁑𝑑 .cos⁑2𝑑 +γ€– cos〗⁑𝑑 . sin⁑2𝑑 ))/((cos⁑2 𝑑)^(3/2) ))/((〖𝑠𝑖𝑛〗^2 𝑑 (3 cos⁑𝑑 . cos⁑2𝑑 + sin⁑2𝑑 . sin⁑𝑑 ) )/(cos⁑2𝑑 )^(3/2) ) 𝑑𝑦/𝑑π‘₯ = (cos^2⁑𝑑 (βˆ’3 sin⁑𝑑 .cos⁑2𝑑 +γ€– cos〗⁑𝑑 . sin⁑2𝑑 ))/(〖𝑠𝑖𝑛〗^2 𝑑 (3 cos⁑𝑑 . cos⁑2𝑑 + sin⁑2𝑑 . sin⁑𝑑 ) ) 𝑑𝑦/𝑑π‘₯ = (cos^2⁑𝑑 (βˆ’3 sin⁑𝑑 .cos⁑2𝑑 +γ€– cos〗⁑𝑑 . sin⁑2𝑑 ))/(〖𝑠𝑖𝑛〗^2 𝑑 (3 cos⁑𝑑 . cos⁑2𝑑 + sin⁑2𝑑 . sin⁑𝑑 ) ) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((βˆ’3 sin⁑𝑑 .cos⁑2𝑑 +γ€– cos〗⁑𝑑 . sin⁑2𝑑)/(3 cos⁑𝑑 . cos⁑2𝑑 + sin⁑2𝑑 . sin⁑𝑑 )) Taking cos 2t common 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((cos⁑2𝑑 (βˆ’3 sin⁑𝑑 + cos⁑𝑑 sin⁑2𝑑/cos⁑2𝑑 ))/(cos⁑2𝑑 (3 cos⁑〖𝑑 γ€—+sin⁑𝑑 . sin⁑2𝑑/cos⁑2𝑑 ) )) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((βˆ’3 sin⁑𝑑 + cos⁑𝑑 sin⁑2𝑑/cos⁑2𝑑 )/(3 cos⁑〖𝑑 γ€—+γ€– sin〗⁑𝑑 . sin⁑2𝑑/cos⁑2𝑑 )) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((βˆ’3 sin⁑𝑑 + cos⁑𝑑 tan⁑2𝑑)/(3 cos⁑〖𝑑 γ€—+γ€– sin〗⁑𝑑 . tan⁑2𝑑 )) Taking cos t common 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((cos⁑𝑑 (βˆ’3 sin⁑𝑑/cos⁑𝑑 + tan⁑2𝑑))/(cos⁑𝑑 (3 + sin⁑𝑑/cos⁑𝑑 . tan⁑2𝑑 )) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((βˆ’3 tan⁑𝑑 + tan⁑2𝑑)/(3 +γ€– tan〗⁑𝑑 . tan⁑2𝑑 )) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((tan⁑2𝑑 βˆ’ 3 tan⁑𝑑)/(3 +γ€– tan〗⁑𝑑 . tan⁑2𝑑 )) Using tan 2πœƒ = (2 π‘‘π‘Žπ‘›β‘πœƒ)/(1 γ€–π‘‘π‘Žπ‘›γ€—^2β‘πœƒ ) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 (((2 tan⁑𝑑)/(1 βˆ’ tan^2⁑𝑑 ) βˆ’ 3 tan⁑𝑑)/(3 + (tan⁑𝑑 ) ((2 tan⁑𝑑)/(1 βˆ’tan^2⁑𝑑 )) )) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 (((2 tan⁑𝑑 βˆ’ 3 tan⁑𝑑 (1 βˆ’ tan^2⁑𝑑 ))/((1 βˆ’ tan^2⁑𝑑)))/((3 (1βˆ’ tan^2⁑𝑑 ) + tan⁑𝑑 (2 tan⁑𝑑 ))/((1 βˆ’ tan^2⁑𝑑)))) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((2 tan⁑𝑑 βˆ’3 tan⁑𝑑 (1 βˆ’ tan^2⁑𝑑 ))/(3 (1βˆ’ tan^2⁑𝑑 ) + tan⁑𝑑 (2 tan⁑𝑑 ) )) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((2 tan⁑𝑑 βˆ’3 tan⁑𝑑 + 3 tan^3⁑𝑑)/(3 βˆ’ 3 tan^2⁑𝑑 + 2 tan^2⁑𝑑 )) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 ((βˆ’tan⁑𝑑 + 3 tan^3⁑𝑑 ) )/((3 βˆ’tan^2⁑𝑑 ) ) 𝑑𝑦/𝑑π‘₯ = cot^2 𝑑 (βˆ’(tan⁑𝑑 βˆ’3 tan^3⁑𝑑 ) )/((3 βˆ’tan^2⁑𝑑 ) ) 𝑑𝑦/𝑑π‘₯ = γ€–βˆ’cotγ€—^2 𝑑 ((tan⁑𝑑 βˆ’3 tan^3⁑𝑑 ) )/((3 βˆ’tan^2⁑𝑑 ) ) Multiplying cot2 t to numerator 𝑑𝑦/𝑑π‘₯ = βˆ’((cot^2⁑𝑑 Γ— tan⁑𝑑 βˆ’ 3 cot^2⁑𝑑 tan^3⁑𝑑)/(3 βˆ’tan^2⁑𝑑 )) 𝑑𝑦/𝑑π‘₯ = βˆ’ ((1/tan^2⁑𝑑 Γ— tan⁑𝑑 βˆ’ 3 Γ— 1/tan^2⁑𝑑 Γ—tan^3⁑𝑑)/(3 βˆ’tan^2⁑𝑑 )) 𝑑𝑦/𝑑π‘₯ = βˆ’ ((1/tan⁑𝑑 .βˆ’ 3 tan⁑𝑑 )/(3 βˆ’ tan^2⁑𝑑 )) 𝑑𝑦/𝑑π‘₯ = βˆ’ (((1 βˆ’3 tan⁑𝑑 (tan⁑〖𝑑)γ€—)/tan⁑𝑑 )/(3 βˆ’ tan^2⁑𝑑 )) 𝑑𝑦/𝑑π‘₯ = βˆ’ ((1 βˆ’ 3 tan^2⁑𝑑 )/(tan⁑𝑑 (3 βˆ’ tan^2⁑𝑑 ) )) 𝑑𝑦/𝑑π‘₯ = βˆ’ ((1 βˆ’ 3 tan^2⁑𝑑 )/(3 tan⁑𝑑 βˆ’tan^3⁑𝑑 )) 𝑑𝑦/𝑑π‘₯ = (βˆ’1)/(((3 tan⁑𝑑 βˆ’γ€– tanγ€—^3⁑𝑑)/(1 βˆ’3 tan^2⁑𝑑 )) ) 𝑑𝑦/𝑑π‘₯ = βˆ’ ((1 βˆ’ 3 tan^2⁑𝑑 )/(3 tan⁑𝑑 βˆ’tan^3⁑𝑑 )) 𝑑𝑦/𝑑π‘₯ = (βˆ’1)/(((3 tan⁑𝑑 βˆ’γ€– tanγ€—^3⁑𝑑)/(1 βˆ’3 tan^2⁑𝑑 )) ) 𝐴𝑠 tan⁑3π‘₯=(3 tan⁑π‘₯ βˆ’ tan^3⁑π‘₯)/(1 βˆ’ 3 tan^2⁑π‘₯ ) 𝑑𝑦/𝑑π‘₯ = (βˆ’1)/tan⁑3𝑑 π’…π’š/𝒅𝒙 = βˆ’π’„π’π’•β‘πŸ‘π’•

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo