Ex 5.6, 6 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Derivatives in parametric form
Derivatives in parametric form
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.6, 6 If x and y are connected parametrically by the equations without eliminating the parameter, Find ππ¦/ππ₯, π₯ = π (π β sinβ‘π), π¦ = π (1 + cosβ‘π)Here ππ¦/ππ₯ = (ππ¦/ππ)/(ππ₯/ππ) Calculating π π/π π½ π¦ = π (1+cosβ‘π) ππ¦/ππ = π(π (1+cosβ‘π))/ππ ππ¦/ππ = π (π(1 + cosβ‘π )/ππ) ππ¦/ππ = π (0βsinβ‘π ) ππ¦/ππ = π (βsinβ‘π ) π π/π π½ = βπ πππβ‘π½ Calculating π π/π π½ π₯=π (π βsinβ‘π ) ππ₯/ππ = π(π π βπ sinβ‘π )/ππ ππ₯/ππ = π(π π)/ππ β π(π sinβ‘π )/ππ ππ₯/ππ = πβγπ cosγβ‘π π π/π π½ = π(γπβπππγβ‘π½ ) Therefore, ππ¦/ππ₯ = (ππ¦/ππ)/(ππ₯/ππ) ππ¦/ππ₯ = (βπ sinβ‘π)/π(γ1 β cosγβ‘π ) ππ¦/ππ₯ = (βsinβ‘π)/γ1 β cosγβ‘π ππ¦/ππ₯ = (β2 γsin γβ‘γπ/2γ γcos γβ‘γπ/2γ)/(2 γsin^2 γβ‘γπ/2γ ) ππ¦/ππ₯ = (βγcos γβ‘γπ/2γ)/(sin π/2) π π/π π = βπππβ‘γπ½/πγ Rough We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by π/2 sin ΞΈ = 2 πππβ‘γπ½/πγ πππβ‘γπ½/πγ and cos 2ΞΈ = 2cos2 ΞΈ β 1 Replacing ΞΈ by π/2 cos ΞΈ = 2cos2 π½/π β 1