Ex 5.6, 5 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at Dec. 16, 2024 by Teachoo
Derivatives in parametric form
Derivatives in parametric form
Last updated at Dec. 16, 2024 by Teachoo
Ex 5.6, 5 If x and y are connected parametrically by the equations without eliminating the parameter, Find ππ¦/ππ₯, π₯ = cosβ‘π β cosβ‘2π, π¦ = sinβ‘π β sinβ‘2π Here ππ¦/ππ₯ = (ππ¦/ππ)/(ππ₯/ππ) Calculating π π/π π½ ππ¦/ππ = π(sinβ‘π β sinβ‘2π)/ππ ππ¦/ππ = π(sin π)/ππ β π(sinβ‘2π)/ππ ππ¦/ππ = cosβ‘πβcosβ‘2π. 2 ππ¦/ππ = πππβ‘π½βπ πππβ‘ππ½ Calculating π π/π π½ ππ₯/ππ = π(cosβ‘π β cosβ‘2π)/ππ ππ₯/ππ " " = π(cosβ‘π)/ππ β π(cosβ‘2π)/ππ ππ₯/ππ " " = βsinβ‘πβ(βsinβ‘2π . 2) ππ₯/ππ = βπππβ‘π½ + π πππβ‘ππ½ Therefore ππ¦/ππ₯ = (ππ¦/(ππ ))/(ππ₯/ππ) ππ¦/ππ₯ = (cosβ‘π β 2 cosβ‘2π)/(βsinβ‘π " +" 2 sinβ‘2π ) π π/π π = (πππβ‘π½ β π πππβ‘ππ½)/(π πππβ‘ππ½ " β" πππβ‘π½ )