Ex 5.5, 18 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18 You are here
Last updated at April 16, 2024 by Teachoo
Ex 5.5, 18 If 𝑢 , 𝑣 and 𝑤 are functions of 𝑥, then show that 𝑑/𝑑𝑥 (𝑢 . 𝑣 . 𝑤 ) = 𝑑𝑢/𝑑𝑥 𝑣. 𝑤+𝑢 . 𝑑𝑣/𝑑𝑥 . 𝑤+𝑢 . 𝑣 𝑑𝑤/𝑑𝑥 in two ways − first by repeated application of product rule, second by logarithmic differentiation. By product Rule Let 𝑦=𝑢𝑣𝑤 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. (𝑑𝑦 )/𝑑𝑥 = 𝑑(𝑢 𝑣 𝑤)/𝑑𝑥 (𝑑𝑦 )/𝑑𝑥 = 𝑑((𝑢𝑣) 𝑤)/𝑑𝑥 Using product Rule in (𝑢𝑣). 𝑤 (𝑢𝑣)’ = 𝑢’𝑣 + 𝑣’𝑢 𝑑𝑦/𝑑𝑥= 𝑑(𝑢𝑣)" " /𝑑𝑥 . 𝑤 + 𝑑(𝑤)" " /𝑑𝑥 . (𝑢𝑣) 𝑑𝑦/𝑑𝑥= (𝑑(𝑢)" " /𝑑𝑥 " . " 𝑣+ 𝑑(𝑣)" " /𝑑𝑥 𝑢)𝑤 + 𝑑(𝑤)/𝑑𝑥 . 𝑢𝑣 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 . 𝑣.𝑤+ 𝑑𝑣/𝑑𝑥 . 𝑢.𝑤 + 𝑑𝑤/𝑑𝑥 . 𝑢𝑣 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 . 𝑣.𝑤+𝑢 𝑑𝑣/𝑑𝑥 .𝑤+𝑢.𝑣. 𝑑𝑤/𝑑𝑥 Hence , (𝒅"(" 𝒖 . 𝒗" . " 𝒘")" )/𝒅𝒙 = 𝒅𝒖/𝒅𝒙 . 𝒗.𝒘+𝒖 𝒅𝒗/𝒅𝒙 .𝒘+𝒖.𝒗. 𝒅𝒘/𝒅𝒙 Again Using product Rule in 𝑢𝑣 (𝑢𝑣)’ = 𝑢’𝑣 + 𝑣’𝑢 Using logarithmic differentiation. Let 𝑦=𝑢𝑣𝑤 Taking log both sides log 𝑦 = log (𝑢𝑣𝑤) log 𝑦=log 𝑢+〖log 〗𝑣+log𝑤 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑦 )/𝑑𝑥 = 𝑑(log 𝑢 + 〖log 〗𝑣 + log𝑤 )/𝑑𝑥 𝑑(log𝑦 )/𝑑𝑥 . 𝑑𝑦/𝑑𝑦 = 𝑑(log 𝑢)/𝑑𝑥 + 𝑑(〖log 〗𝑣 )/𝑑𝑥 + 𝑑(log𝑤 )/𝑑𝑥 (As log (ab) = log a + log b) 𝑑(log𝑦 )/𝑑𝑦 . 𝑑𝑦/𝑑𝑥 = 𝑑(log 𝑢)/𝑑𝑥 + 𝑑(〖log 〗𝑣 )/𝑑𝑥 + 𝑑(log𝑤 )/𝑑𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/𝑢 . 𝑑(𝑢)/𝑑𝑥 + 1/𝑣. 𝑑(𝑣)/𝑑𝑥 + 1/𝑤 . 𝑑(𝑤)/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑦 (1/𝑢 . 𝑑𝑢/𝑑𝑥 + 1/𝑣. 𝑑𝑣/𝑑𝑥 + 1/𝑤 . 𝑑𝑤/𝑑𝑥) 𝑑𝑦/𝑑𝑥 = 𝑢𝑣𝑤 (1/𝑢 . 𝑑𝑢/𝑑𝑥 + 1/𝑣. 𝑑𝑣/𝑑𝑥 + 1/𝑤 . 𝑑𝑤/𝑑𝑥) 𝑑𝑦/𝑑𝑥 = 𝑢𝑣𝑤 . 1/𝑢 . 𝑑𝑢/𝑑𝑥 + 𝑢𝑣𝑤 . 1/𝑣. 𝑑𝑣/𝑑𝑥 + 𝑢𝑣𝑤 . 1/𝑤. 𝑑𝑤/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑣𝑤 . 𝑑𝑢/𝑑𝑥 + 𝑢𝑤 . 𝑑𝑣/𝑑𝑥 + 𝑢𝑣 . 𝑑𝑤/𝑑𝑥 (𝒅"(" 𝒖 . 𝒗" . " 𝒘")" )/𝒅𝒙 = 𝒅𝒖/𝒅𝒙 . 𝒗𝒘+𝒖 . 𝒅𝒗/𝒅𝒙 .𝒘+𝒖.𝒗. 𝒅𝒘/𝒅𝒙