Ex 5.5, 6 - Differentiate (x + 1/x)^x + x^(1 + 1/x) - Teachoo

Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability - Part 3
Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability - Part 4
Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability - Part 5 Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability - Part 6 Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability - Part 7 Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability - Part 8

Go Ad-free

Transcript

Ex 5.5, 6 Differentiate the functions in, (๐‘ฅ+1/๐‘ฅ)^๐‘ฅ+ ๐‘ฅ^((1 + 1/๐‘ฅ) ) Let ๐‘ฆ= (๐‘ฅ+1/๐‘ฅ)^๐‘ฅ+ ๐‘ฅ^((1 + 1/๐‘ฅ) ) Let ๐‘ข = (๐‘ฅ+1/๐‘ฅ)^๐‘ฅ , ๐‘ฃ = ๐‘ฅ^((1 + 1/๐‘ฅ) ) ๐‘ฆ = ๐‘ข+๐‘ฃ Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘ (๐‘ข + ๐‘ฃ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ Calculating ๐’…๐’–/๐’…๐’™ ๐‘ข = (๐‘ฅ+1/๐‘ฅ)^๐‘ฅ Taking log both sides logโก๐‘ข = log (๐‘ฅ+1/๐‘ฅ)^๐‘ฅ logโก๐‘ข = ๐‘ฅ log (๐‘ฅ+1/๐‘ฅ) Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ฅ = (๐‘‘ (๐‘ฅ log" " (๐‘ฅ + 1/๐‘ฅ)))/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ฅ (๐‘‘๐‘ข/๐‘‘๐‘ข) = (๐‘‘ (๐‘ฅ log" " (๐‘ฅ + 1/๐‘ฅ)))/๐‘‘๐‘ฅ (As ๐‘™๐‘œ๐‘”โก(๐‘Ž^๐‘ )=๐‘ . ๐‘™๐‘œ๐‘”โก๐‘Ž) ๐‘‘(logโก๐‘ข )/๐‘‘๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" = " (๐‘‘ (๐‘ฅ log" " (๐‘ฅ + 1/๐‘ฅ)))/๐‘‘๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" = " (๐‘‘ (๐‘ฅ log" " (๐‘ฅ + 1/๐‘ฅ)))/๐‘‘๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" = " ๐‘‘(๐‘ฅ)/๐‘‘๐‘ฅ . log (๐‘ฅ + 1/๐‘ฅ) + ๐‘‘(log" " (๐‘ฅ + 1/๐‘ฅ))/๐‘‘๐‘ฅ . ๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" 1. log (๐‘ฅ + 1/๐‘ฅ) + ((1/(๐‘ฅ + 1/๐‘ฅ)).๐‘‘/๐‘‘๐‘ฅ (๐‘ฅ + 1/๐‘ฅ)) . ๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (๐‘ฅ + 1/๐‘ฅ) + (1/(๐‘ฅ + 1/๐‘ฅ) . (๐‘‘(๐‘ฅ)/๐‘‘๐‘ฅ+(๐‘‘ (1/๐‘ฅ))/๐‘‘๐‘ฅ)) . ๐‘ฅ Using product rule in ๐‘ฅ ๐‘™๐‘œ๐‘”" " (๐‘ฅ + 1/๐‘ฅ) As (uv)โ€™ = uโ€™ v + vโ€™ u 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (๐‘ฅ+1/๐‘ฅ) + (1/(๐‘ฅ + 1/๐‘ฅ) . (1+(โˆ’1)/๐‘ฅ^2 " " )) . ๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (๐‘ฅ+1/๐‘ฅ) + (๐‘ฅ/(๐‘ฅ^2 + 1) . (1โˆ’1/๐‘ฅ^2 " " )) . ๐‘ฅ 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (๐‘ฅ+1/๐‘ฅ) + (๐‘ฅ/(๐‘ฅ^2 + 1) ((๐‘ฅ^2 โˆ’ 1)/๐‘ฅ^2 ).๐‘ฅ) 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (๐‘ฅ+1/๐‘ฅ) + (๐‘ฅ/(๐‘ฅ^2 + 1) ((๐‘ฅ^2 โˆ’ 1)/๐‘ฅ^2 ).๐‘ฅ) 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (๐‘ฅ+1/๐‘ฅ) + (๐‘ฅ^2/๐‘ฅ^2 ((๐‘ฅ^2 โˆ’ 1)/(๐‘ฅ^2 + 1))) 1/๐‘ข (๐‘‘๐‘ข/๐‘‘๐‘ฅ)" =" log (๐‘ฅ+1/๐‘ฅ) + ((๐‘ฅ^2 โˆ’ 1)/(๐‘ฅ^2+ 1)) ๐‘‘๐‘ข/๐‘‘๐‘ฅ "= " ๐‘ข (ใ€–log ใ€—โก(๐‘ฅ+1/๐‘ฅ)+((๐‘ฅ^2 โˆ’ 1)/(๐‘ฅ^2+ 1))) ๐‘‘๐‘ข/๐‘‘๐‘ฅ "=" (๐‘ฅ+1/๐‘ฅ)^๐‘ฅ (ใ€–log ใ€—โก(๐‘ฅ+1/๐‘ฅ)+((๐‘ฅ^2 โˆ’ 1)/(๐‘ฅ^2+ 1))) ๐’…๐’–/๐’…๐’™ "=" (๐’™+๐Ÿ/๐’™)^๐’™ ((๐’™^๐Ÿ โˆ’ ๐Ÿ)/(๐’™^๐Ÿ+ ๐Ÿ)โกใ€–+ ใ€–๐’๐’๐’ˆ ใ€—โก(๐’™+๐Ÿ/๐’™) ใ€— ) Calculating ๐’…๐’—/๐’…๐’™ ๐‘ฃ = ๐‘ฅ^(1 + 1/๐‘ฅ)" " Taking log both sides log ๐‘ฃ = log ๐‘ฅ^(1 + 1/๐‘ฅ)" " log ๐‘ฃ = (1 + 1/๐‘ฅ)log ๐‘ฅ^" " Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฅ = (๐‘‘ ((1 + 1/๐‘ฅ)" . " log ๐‘ฅ))/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฅ (๐‘‘๐‘ฃ/๐‘‘๐‘ฃ) = (๐‘‘ ((1 + 1/๐‘ฅ)" . " log ๐‘ฅ))/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฃ )/๐‘‘๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = (๐‘‘ ((1 + 1/๐‘ฅ)" . " log ๐‘ฅ))/๐‘‘๐‘ฅ 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = (๐‘‘ ((1 + 1/๐‘ฅ)" . " log ๐‘ฅ))/๐‘‘๐‘ฅ Using product rule in (๐‘ฅ+ 1/๐‘ฅ)" . " ๐‘™๐‘œ๐‘” ๐‘ฅ 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ๐‘‘(1 + 1/๐‘ฅ)/๐‘‘๐‘ฅ . logโก๐‘ฅ + ๐‘‘(logโก๐‘ฅ )/๐‘‘๐‘ฅ . (1 + 1/๐‘ฅ) 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = (๐‘‘(1)/๐‘‘๐‘ฅ+๐‘‘(1/๐‘ฅ)/๐‘‘๐‘ฅ) . logโก๐‘ฅ + 1/๐‘ฅ (1 + 1/๐‘ฅ) 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = (0+((โˆ’1)/๐‘ฅ^2 )) . logโก๐‘ฅ + 1/๐‘ฅ (1 + 1/๐‘ฅ) 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = (โˆ’1)/๐‘ฅ^2 . logโก๐‘ฅ + 1/๐‘ฅ (1 + 1/๐‘ฅ) 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = (โˆ’logโก๐‘ฅ)/๐‘ฅ^2 + 1/๐‘ฅ + 1/๐‘ฅ^2 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = (โˆ’logโก๐‘ฅ)/๐‘ฅ^2 + 1/๐‘ฅ + 1/๐‘ฅ^2 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ((โˆ’logโก๐‘ฅ + ๐‘ฅ + 1)/๐‘ฅ^2 ) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฃ ((โˆ’logโก๐‘ฅ + ๐‘ฅ + 1)/๐‘ฅ^2 ) ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘ฅ^((1 + 1/๐‘ฅ) ) ((๐‘ฅ + 1 โˆ’ logโก๐‘ฅ )/๐‘ฅ^2 ) Now ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ Putting values of ๐‘‘๐‘ข/๐‘‘๐‘ฅ & ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ ๐’…๐’š/๐’…๐’™ = (๐’™+๐Ÿ/๐’™)^๐’™ ((๐’™^๐Ÿ โˆ’ ๐Ÿ)/(๐’™^๐Ÿ+ ๐Ÿ)+๐ฅ๐จ๐ โก(๐’™+ ๐Ÿ/๐’™) ) + ๐’™^((๐Ÿ + ๐Ÿ/๐’™) ) ((๐’™ + ๐Ÿ โˆ’ ๐’๐’๐’ˆโก๐’™ )/๐’™^๐Ÿ )

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo