Ex 5.5, 3 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important You are here
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at April 16, 2024 by Teachoo
Ex 5.5, 3 Differentiate the functions in, (logβ‘π₯ )^cosβ‘π₯ Let π¦=(logβ‘π₯ )^cosβ‘π₯ Taking log both sides logβ‘π¦ = logβ‘γγ (logβ‘π₯ )γ^cosβ‘π₯ γ logβ‘π¦ = cosβ‘γπ₯ .γlog γβ‘(logβ‘π₯ ) γ Differentiating both sides π€.π.π‘.π₯. π(logβ‘π¦)/ππ₯ = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ¦) = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ₯) = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ (As πππβ‘(π^π) = π πππβ‘π) 1/π¦ . ππ¦/ππ₯ = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ 1/π¦ ππ¦/ππ₯ = π(cosβ‘π₯ )/ππ₯ . γ log γβ‘(logβ‘π₯ ) + π(γ log γβ‘(logβ‘π₯ ) )/ππ₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + 1/logβ‘π₯ . π(logβ‘π₯ )/ππ₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + 1/logβ‘π₯ Γ 1/π₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + cosβ‘π₯/(π₯ logβ‘π₯ ) ππ¦/ππ₯ = π¦ (γβsinγβ‘π₯ " . " γlog γβ‘(logβ‘π₯ )" + " cosβ‘π₯/(π₯ logβ‘π₯ )) Using product rule in πππ β‘γπ₯ .γ πππ γβ‘(πππβ‘π₯ ) γ (π’π£)β = π’βπ£ + π£βπ’ Putting values of π¦ ππ¦/ππ₯ = (πππβ‘π₯ )^πππ β‘π₯ (γβπ ππγβ‘π₯ " . " γπππ γβ‘(πππβ‘π₯ )" + " πππ β‘π₯/(π₯ πππβ‘π₯ )) π π/π π = (πππβ‘π )^πππβ‘π (πππβ‘π/(π πππβ‘π ) γ β πππγβ‘π " . " γπ₯π¨π γβ‘(πππβ‘π ) )