Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at Oct. 28, 2024 by Teachoo
Ex 5.5, 1 Differentiate the functions in, cosβ‘π₯ . cosβ‘2π₯ . cosβ‘3π₯ Let y = cosβ‘π₯ . cosβ‘2π₯ . cosβ‘3π₯ Taking log both sides logβ‘π¦ = log (cosβ‘π₯.cosβ‘2π₯.cosβ‘3π₯ ) πππβ‘π = πππ β‘(πππβ‘π) + πππ β‘(πππ ππ) + πππ β‘(πππβ‘ππ) Differentiating both sides π€.π.π‘.π₯. π(logβ‘π¦ )/ππ₯ = π(log β‘(cosβ‘π₯)" + " log β‘(cosβ‘2π₯) "+ " log β‘(cosβ‘3π₯))/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ¦) = (π(log β‘(cosβ‘π₯)) )/ππ₯ + (π(log β‘(cosβ‘2π₯)) )/ππ₯ + (π(log β‘(cosβ‘3π₯)) )/ππ₯ π (πππβ‘π )/π π (π π/π π) = π/ππ¨π¬β‘π . (π (ππ¨π¬β‘π ))/π π + π/ππ¨π¬β‘ππ . (π (ππ¨π¬β‘ππ))/π π + π/ππ¨π¬β‘ππ . π (ππ¨π¬β‘ππ )/π π 1/π¦ . ππ¦/ππ₯ = 1/cosβ‘π₯ .(β sinβ‘π₯) + 1/cosβ‘2π₯ .(β sinβ‘2π₯).π(2π₯)/ππ₯ + 1/cosβ‘π₯ .(β sinβ‘3π₯).π(3π₯)/ππ₯ π/π . π π/π π = (βπ¬π’π§β‘π)/ππ¨π¬β‘π β π¬π’π§β‘ππ/ππ¨π¬β‘π . π β π¬π’π§β‘ππ/ππ¨π¬β‘ππ . π 1/π¦ . ππ¦/ππ₯ = βtanβ‘π₯βtanβ‘2π₯. 2 βtanβ‘3π₯. 3 π/π . π π/π π = β (πππβ‘π+π πππβ‘ππ+π πππβ‘ππ ) ππ¦/ππ₯ = βπ¦ (tanβ‘π₯+2 tanβ‘2π₯+3 tanβ‘3π₯ ) π π/π π = β πππβ‘π . πππβ‘ππ . πππβ‘ππ (πππβ‘π+π πππβ‘ππ+π πππβ‘ππ )