



Checking if funciton is differentiable
Checking if funciton is differentiable
Last updated at Feb. 27, 2025 by Teachoo
Transcript
Ex 5.2, 10 (Introduction) Prove that the greatest integer function defined by f (x) = [x], 0 < x < 3 is not differentiable at π₯=1 and π₯= 2. Ex 5.2, 10 Prove that the greatest integer function defined by f (x) = [x], 0 < x < 3 is not differentiable at π₯=1 and π₯= 2. f (x) = [x] Letβs check for both x = 1 and x = 2 At x = 1 f (x) is differentiable at x = 1 if LHD = RHD (πππ)β¬(π‘βπ) (π(π) β π(π β π))/π = (πππ)β¬(hβ0) (π(1) β π(1 β β))/β = (πππ)β¬(hβ0) ([1] β [(1 β β)])/β = (πππ)β¬(hβ0) (1 β 0)/β = (πππ)β¬(hβ0) 1/β = 1/0 = Not defined (πππ)β¬(π‘βπ) (π(π + π) β π(π))/π = (πππ)β¬(hβ0) (π(1 + β) β π(1))/β = (πππ)β¬(hβ0) ([(1 + β)] β [1])/β = (πππ)β¬(hβ0) (1 β 1)/β = (πππ)β¬(hβ0) 0/β = (πππ)β¬(hβ0) 0 = 0 For greatest integer function [1] = 1 [1 β h] = 0 [1 + h] = 1 Since LHD β RHD β΄ f(x) is not differentiable at x = 1 Hence proved At x = 2 f (x) is differentiable at x = 2 if LHD = RHD L H D (πππ)β¬(π‘βπ) (π(π) β π(π β π))/π = (πππ)β¬(hβ0) (π(2) β π(2 β β))/β = (πππ)β¬(hβ0) ([2] β [(2 β β)])/β = (πππ)β¬(hβ0) (2 β 1)/β = (πππ)β¬(hβ0) 1/β = 1/0 = Not defined R H D (πππ)β¬(π‘βπ) (π(π + π) β π(π))/π = (πππ)β¬(hβ0) (π(2 + β) β π(2))/β = (πππ)β¬(hβ0) ([(2 + β)] β [2])/β = (πππ)β¬(hβ0) (2 β 2)/β = (πππ)β¬(hβ0) 0/β = (πππ)β¬(hβ0) 0 = 0 For greatest integer function [2] = 2 [2 β h] = 1 [2 + h] = 2 Since LHD β RHD β΄ f(x) is not differentiable at x = 2 Hence proved