Ex 5.2, 9 - Prove that f(x) = |x - 1| is not differentiable Ex 5.2, 9 - Chapter 5 Class 12 Continuity and Differentiability - Part 2 Ex 5.2, 9 - Chapter 5 Class 12 Continuity and Differentiability - Part 3

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 5.2, 9 Prove that the function f given by ๐‘“ (๐‘ฅ) = | ๐‘ฅ โ€“ 1|, ๐‘ฅ โˆˆ ๐‘… is not differentiable at x = 1. f(x) = |๐‘ฅโˆ’1| = {โ–ˆ((๐‘ฅโˆ’1), ๐‘ฅโˆ’1โ‰ฅ0@โˆ’(๐‘ฅโˆ’1), ๐‘ฅโˆ’1<0)โ”ค = {โ–ˆ((๐‘ฅโˆ’1), ๐‘ฅโ‰ฅ1@โˆ’(๐‘ฅโˆ’1), ๐‘ฅ<1)โ”ค Now, f(x) is a differentiable at x = 1 if LHD = RHD (๐’๐’Š๐’Ž)โ”ฌ(๐กโ†’๐ŸŽ) (๐’‡(๐’™) โˆ’ ๐’‡(๐’™ โˆ’ ๐’‰))/๐’‰ = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (๐‘“(1) โˆ’ ๐‘“(1 โˆ’ โ„Ž))/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (|1 โˆ’ 1|โˆ’|(1 โˆ’ โ„Ž)โˆ’1|)/โ„Ž = (๐‘™ ๐‘–๐‘š)โ”ฌ(hโ†’0) (0 โˆ’|โˆ’โ„Ž|)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (0 โˆ’ โ„Ž)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (โˆ’โ„Ž)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (โˆ’1) = โˆ’1 (๐’๐’Š๐’Ž)โ”ฌ(๐กโ†’๐ŸŽ) (๐’‡(๐’™ + ๐’‰) โˆ’ ๐’‡(๐’™))/๐’‰ = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (๐‘“(1 + โ„Ž) โˆ’ ๐‘“(1))/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (|(1 + โ„Ž) โˆ’ 1|โˆ’|1 โˆ’ 1|)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (|โ„Ž| โˆ’ 0)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (โ„Ž โˆ’ 0)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) โ„Ž/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (1) = 1 Since LHD โ‰  RHD โˆด f(x) is not differentiable at x = 1 Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo