Ex 5.2, 6 - Differentiate cos x3 sin2 (x5) - Chapter 5 CBSE

Ex 5.2, 6 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.2, 6 - Chapter 5 Class 12 Continuity and Differentiability - Part 3

Go Ad-free

Transcript

Ex 5.2, 6 Differentiate the functions with respect to π‘₯ cos⁑π‘₯3 . sin2 (π‘₯5)Let 𝑦 = cos⁑π‘₯3 . sin2 (π‘₯5) Let 𝑒 = cos⁑π‘₯3 & 𝑣=sin2 (π‘₯5) ∴ 𝑦 = 𝒖𝒗 We need to find derivative of 𝑦 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑦^β€² = (𝑒𝑣)^β€² = 𝑒^β€² 𝑣+𝑣^β€² 𝑒 Finding 𝒖’ 𝑒=cos⁑π‘₯3 " " Differentiating 𝑒^β€² = (cos⁑π‘₯3) = βˆ’sin⁑π‘₯3 . (π‘₯^3 )^β€² = βˆ’sin⁑〖π‘₯^3 γ€—. 3π‘₯^(3 βˆ’1) = βˆ’sin⁑〖π‘₯^3 γ€—. 3π‘₯^2 = βˆ’ πŸ‘π’™^𝟐 . π’”π’Šπ’β‘γ€–π’™^πŸ‘ γ€— Finding 𝒗’ 𝑣=sin2 π‘₯5 𝑣=(sin π‘₯5)^2 Differentiating 𝑣^β€² = ((sin π‘₯5)^2 )^β€² = 2(sin π‘₯5). (sin π‘₯^5 )^β€² = 2 sin π‘₯^5 (cos⁑〖π‘₯^5 γ€— ) (π‘₯^5 )^β€² = 2 sin π‘₯^5 .cos⁑〖π‘₯^5 γ€— . 5π‘₯^4 = 10π‘₯^4 . sin π‘₯^5 .cos⁑〖π‘₯^5 γ€— Now 𝑦^β€² = 𝑒^β€² 𝑣+𝑣^β€² 𝑒 =(βˆ’ 3π‘₯^2 . sin⁑〖π‘₯^3 γ€— ) .(sin2 π‘₯5)+(10π‘₯^4 . sin π‘₯^5 .cos⁑〖π‘₯^5 γ€— )(cos⁑π‘₯3) =πŸπŸŽπ’™^πŸ’ . π’”π’Šπ’ 𝒙^πŸ“ .𝒄𝒐𝒔⁑〖𝒙^πŸ“ γ€—. 𝒄𝒐𝒔⁑〖𝒙^πŸ‘ γ€—βˆ’ πŸ‘π’™^𝟐. π’”π’Šπ’β‘γ€–π’™^πŸ‘ γ€—.π’”π’Šπ’πŸ π’™πŸ“

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo