Ex 5.3, 13 - Find dy/dx in, y=cos-1 (2x/1+x2) - NCERT - Ex 5.3

Ex 5.3, 13 - Chapter 5 Class 12 Continuity and Differentiability - Part 2

Go Ad-free

Transcript

Ex 5.3, 13 Find 𝑑𝑦/𝑑π‘₯ in, y = cos–1 (2π‘₯/( 1+ π‘₯2 )) , βˆ’1 < x < 1 𝑦 = cos–1 (2π‘₯/( 1+ π‘₯2 )) Let π‘₯ = tanβ‘πœƒ 𝑦 = cos–1 ((2 tanβ‘πœƒ)/( 1 + π‘‘π‘Žπ‘›2πœƒ )) 𝑦 = cos–1 (sin 2ΞΈ) 𝑦 ="cos–1" (γ€–cos 〗⁑(πœ‹/2 βˆ’2πœƒ) ) 𝑦 = πœ‹/2 βˆ’ 2πœƒ Putting value of ΞΈ = tanβˆ’1 x 𝑦 = πœ‹/2 βˆ’ 2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯ Since x = tan ΞΈ ∴ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) x = ΞΈ Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑(𝑦))/𝑑π‘₯ = (𝑑 (" " πœ‹/2 " βˆ’ " γ€–2π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯" " ))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 0 βˆ’ 2 (𝑑〖 (π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = βˆ’ 2 (𝑑〖 (π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = βˆ’ 2 (1/(1 + π‘₯^2 )) π’…π’š/𝒅𝒙 = (βˆ’πŸ)/(𝟏 + 𝒙^𝟐 ) ((γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯") β€˜ = " 1/(1 + π‘₯^2 ))

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo