Ex 5.3, 7 - Find dy/dx in sin2 y + cos xy = pi - Class 12

Ex 5.3, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.3, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 3
Ex 5.3, 7 - Chapter 5 Class 12 Continuity and Differentiability - Part 4

Go Ad-free

Transcript

Ex 5.3, 7 Find 𝑑𝑦/𝑑π‘₯ in, sin2 𝑦 +cos⁑ π‘₯𝑦 =πœ‹ sin2 𝑦 +cos⁑ π‘₯𝑦 =πœ‹ Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ . (𝑑 (sin2 𝑦 + cos⁑ π‘₯𝑦))/𝑑π‘₯ = (𝑑 (πœ‹))/𝑑π‘₯ (𝑑 (sin2 𝑦))/𝑑π‘₯ + (𝑑 (cos⁑〖 π‘₯γ€— 𝑦))/𝑑π‘₯= 0 Calculating Derivative of sin2 𝑦 & cos (x𝑦) separately Calculating Derivative of π’”π’Šπ’πŸ π’š (𝑑 (sin2 𝑦))/𝑑π‘₯= (𝑑 (sin2 𝑦))/𝑑π‘₯ Γ— 𝑑𝑦/𝑑𝑦 =(𝑑 (sin2(𝑦)))/𝑑𝑦 Γ— 𝑑𝑦/𝑑π‘₯ =2 𝑠𝑖𝑛 𝑦 Γ— (𝑑(sin⁑〖𝑦)γ€—)/𝑑𝑦 Γ— 𝑑𝑦/𝑑π‘₯ = 2 sin⁑〖𝑦 cos⁑〖𝑦 Γ— γ€— γ€— 𝑑𝑦/𝑑π‘₯ Calculating Derivative of 𝒄𝒐𝒔 (π’™π’š) (𝑑(cos⁑〖(π‘₯𝑦))γ€—)/𝑑π‘₯= βˆ’ sin⁑(π‘₯𝑦) Γ— 𝑑/𝑑π‘₯(π‘₯𝑦) = βˆ’sin⁑(π‘₯𝑦)Γ—(𝑑(π‘₯)/𝑑π‘₯.𝑦+𝑑(𝑦)/𝑑π‘₯.π‘₯) = βˆ’sin⁑(π‘₯𝑦) . (1.𝑦+π‘₯ 𝑑𝑦/𝑑π‘₯) = βˆ’sin⁑(π‘₯𝑦) (𝑦+π‘₯ 𝑑𝑦/𝑑π‘₯) = βˆ’sin⁑(π‘₯𝑦) . π‘¦βˆ’sin⁑〖(π‘₯𝑦) . π‘₯γ€— 𝑑𝑦/𝑑π‘₯ = βˆ’π‘¦ sin⁑〖 (π‘₯𝑦)γ€— βˆ’ sin⁑〖(π‘₯𝑦) . π‘₯γ€— 𝑑𝑦/𝑑π‘₯ Now, (𝑑 (𝑠𝑖𝑛2𝑦))/𝑑π‘₯+(𝑑 (cos⁑〖(π‘₯𝑦)) γ€—)/𝑑π‘₯ = 0 Putting values 2 sin⁑𝑦.cos⁑〖𝑦 .γ€— 𝑑𝑦/𝑑π‘₯ + (βˆ’ 𝑦 sin⁑(π‘₯𝑦)βˆ’π‘₯ sin⁑(π‘₯𝑦) 𝑑𝑦/𝑑π‘₯) = 0 2 sin⁑𝑦.cos⁑〖𝑦 .γ€— 𝑑𝑦/𝑑π‘₯ βˆ’ 𝑦 sin⁑(π‘₯𝑦) βˆ’ π‘₯ sin⁑(π‘₯𝑦) 𝑑𝑦/𝑑π‘₯ = 0 2 sin⁑𝑦 cos⁑〖𝑦 γ€— 𝑑𝑦/𝑑π‘₯ βˆ’π‘₯ sin⁑(π‘₯𝑦) 𝑑𝑦/𝑑π‘₯ = 𝑦 sin⁑(π‘₯𝑦) 𝑑𝑦/𝑑π‘₯ (2 sin⁑𝑦 cos⁑𝑦 βˆ’ π‘₯ sin⁑(π‘₯𝑦) = 𝑦 sin⁑(π‘₯𝑦) 𝑑𝑦/𝑑π‘₯ = (𝑦 sin⁑〖(π‘₯𝑦)γ€—)/(2 γ€–sin 𝑦〗⁑〖cos⁑𝑦 βˆ’ π‘₯ sin⁑π‘₯𝑦 γ€— ) π’…π’š/𝒅𝒙 = (π’š π’”π’Šπ’β‘γ€–(π’™π’š)γ€—)/γ€–π’”π’Šπ’ πŸπ’šγ€—β‘γ€–βˆ’ 𝒙 π’”π’Šπ’β‘π’™π’š γ€—

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo