Ex 5.3, 5 - Find dy/dx in, x2 + xy + y2 = 100 - Class 12

Ex 5.3, 5 - Chapter 5 Class 12 Continuity and Differentiability - Part 2

Go Ad-free

Transcript

Ex 5.3, 5 Find 𝑑𝑦/𝑑𝑥 in, 𝑥2 + 𝑥𝑦 + 𝑦2 = 100 𝑥2 + 𝑥𝑦 + 𝑦2 = 100 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 . 𝑑(𝑥2 + 𝑥𝑦 + 𝑦2)/𝑑𝑥 = (𝑑 (100))/𝑑𝑥 𝑑(𝑥2)/𝑑𝑥 + 𝑑(𝑥𝑦)/𝑑𝑥 + (𝑑(𝑦2))/𝑑𝑥 = (𝑑 (100))/𝑑𝑥 2𝑥^(2−1) + (𝑑(𝑥𝑦))/𝑑𝑥 + (𝑑(𝑦2))/𝑑𝑥 × 𝑑𝑦/𝑑𝑦 = 0 2𝑥 + (𝑑(𝑥𝑦))/𝑑𝑥 + (𝑑(𝑦2))/𝑑𝑦 × 𝑑𝑦/𝑑𝑥 = 0 As (𝑥^𝑛 )^′=𝑛𝑥^(𝑛−1) & derivative of a constant is zero 2𝑥 + (𝑑(𝑥𝑦))/𝑑𝑥 + 2𝑦^(2−1) . 𝑑𝑦/𝑑𝑥 = 0 2𝑥 + (𝑑(𝑥𝑦))/𝑑𝑥 + 2𝑦 . 𝑑𝑦/𝑑𝑥 = 0 Using product rule in 𝑥𝑦 = 𝑥^′ 𝑦+𝑦^′ 𝑥 2𝑥 + ((𝑑(𝑥))/𝑑𝑥 .𝑦+𝑑(𝑦)/𝑑𝑥.𝑥) + 2𝑦 . 𝑑𝑦/𝑑𝑥 = 0 2𝑥 + (1 .𝑦+𝑥.𝑑(𝑦)/𝑑𝑥) + 2𝑦 . 𝑑𝑦/𝑑𝑥 = 0 2𝑥 + 𝑦 + 𝑥 . 𝑑𝑦/𝑑𝑥 + 2𝑦 . 𝑑𝑦/𝑑𝑥 = 0 (2𝑥 + 𝑦) + 𝑑𝑦/𝑑𝑥 . (𝑥 + 2𝑦) = 0 𝑑𝑦/𝑑𝑥 . (𝑥 + 2𝑦) = − (2𝑥 + 𝑦) 𝒅𝒚/𝒅𝒙 = (−( 𝟐𝒙 + 𝒚 ))/( ( 𝒙 + 𝟐𝒚 ))

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo