Rationalising
Add (3√2+7√3) and (√2−5√3)
Divide 5√11 by 3√33
Multiply 2√15 by 7√5
Simplify (√5+√7)^2
Simplify (√4−√13)(√4+√13)
Simplify (9−√3)(9+√3)
Simplify (3√5−5√2)(4√5+3√2)
Rationalise the denominator of 8/√7
Rationalise the denominator of 1/((8 + 5√2))
Simplify (7√3)/(√10 + √3)−(2√5)/(√6 + √5)−(3√2)/(√15 + 3√2)
Multiple Choice Questions - Chapter 1 Class 9 Maths
Example 16
If a and b are rational numbers and (√11 − √7)/(√11 + √7) = a – b√77, find the value of a and b
Example 17
Find the values of a and b if (7 + 3√5)/(3 + √5) – (7 − 3√5)/(3 − √5) = a+√5 b
Ex 1.4, 5 (i)
If x = 1/(2 − √3), find the value of x^3 − 2x^2 − 7x + 5
If a = 5 + 2√6 and b = 1/a, then what will be the value of a^2+b^2 ?
Example 18
Example 19 Important You are here
Rationalising
Last updated at April 16, 2024 by Teachoo
Example 19 Rationalize the denominator of 1/(7 + 3√2 ). 1/(7 + 3√2 ) = 1/(7 + 3√2) × (𝟕 − 𝟑√𝟐)/(𝟕 − 𝟑√𝟐) = (7 − 3√2)/(7 + 3√2)(7 − 3√2) = (7 − 3√2)/((𝟕)^𝟐 − (𝟑√𝟐)^𝟐 ) = (7 − 3√2)/(49 − (3 × 3 × √2 × √2) ) = (7 − 3√2)/(49 − (9 × 2) ) ( As (a + b)(a – b) = a2 – b2 ) = (7 − 3√2)/(49 − 18) = (𝟕 − 𝟑√𝟐)/𝟑𝟏