Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9
Example 10 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16
Question 17 Important
Question 18 Important
Question 19 Important You are here
Question 20 Important
Last updated at April 16, 2024 by Teachoo
Question 19 Show that the lines (𝑥 − 𝑎 + 𝑑)/(𝛼 − 𝛿) = (𝑦 − 𝑎)/𝛼 = (𝑧 − 𝑎 − 𝑑)/(𝛼 + 𝛿) nd (𝑥 − 𝑏 + 𝑐)/(𝛽 − 𝛾) = (𝑦 − 𝑏)/𝛽 = (𝑧 − 𝑏 − 𝑐)/(𝛽 + 𝛾) are coplanar.Two lines (𝑥 − 𝑥_1)/𝑎_1 = (𝑦 − 𝑦_1)/𝑏_1 = (𝑧 − 𝑧_1)/𝑐_1 and (𝑥 − 𝑥_2)/𝑎_2 = (𝑦 − 𝑦_2)/𝑏_2 = (𝑧 − 𝑧_2)/𝑐_2 are coplanar if |■8(𝒙_𝟐− 𝒙_𝟏&𝒚_𝟐−𝒚_𝟏&𝒛_𝟐−𝒛_𝟏@𝒂_𝟏&𝒃_𝟏&𝒄_𝟏@𝒂_𝟐&𝒃_𝟐&𝒄_𝟐 )| = 0 (𝒙 − 𝒂 + 𝒅)/(𝜶 − 𝜹) = (𝒚 − 𝒂)/𝜶 = (𝒛 − 𝒂 − 𝒅)/(𝜶 + 𝜹) (𝑥 − (𝑎 − 𝑑))/(𝛼 − 𝛿) = (𝑦 − 𝑎)/𝛼 = (𝑧 − (𝑎 + 𝑑))/(𝛼 + 𝛿) Comparing (𝑥 − 𝑥_1)/𝑎_1 = (𝑦 − 𝑦_1)/𝑏_1 = (𝑧 − 𝑧_1)/𝑐_1 𝑥_1 = 𝑎 − d , 𝑦_1= 𝑎 , 𝑧_1= 𝑎 + d & 𝑎_1=𝛼−𝛿, 𝑏_1= 𝛼, 𝑐_1= 𝛼+𝛿 (𝒙 − 𝒃 + 𝒄)/(𝜷 − 𝜸) = (𝒚 − 𝒃)/𝜷 = (𝒛 − 𝒃 − 𝒄)/(𝜷 + 𝜸) (𝑥 − (𝑏 − 𝑐))/(𝛽 − 𝛾) = (𝑦 − 𝑏)/𝛽 = (𝑧 − (𝑏 + 𝑐))/(𝛽 + 𝛾) Comparing (𝑥 − 𝑥_2)/𝑎_2 = (𝑦 − 𝑦_2)/𝑏_2 = (𝑧 − 𝑧_1)/𝑐_2 𝑥_2 = 𝑏 − c , 𝑦_2= 𝑏 , 𝑧_2= 𝑏 + c & 𝑎_2 = 𝛽−𝛾, 𝑏_2 = 𝛽, 𝑐_2 = 𝛽 + 𝛾 Now, |■8(𝑥_2−𝑥_1&𝑦_2−𝑦_1&𝑧_2−𝑧_1@𝑎_1&𝑏_1&𝑐_1@𝑎_2&𝑏_2&𝑐_2 )| = |■8(𝑏−𝑐−𝑎 + 𝑑&𝑏−𝑎&𝑏+𝑐−𝑎−𝑑@𝛼−𝛿&𝛼&𝛼+𝛿@𝛽−𝛾&𝛽&𝛽+𝛾)| Adding Column 3 to Column 1, = |■8(𝑏−𝑐−𝑎 + 𝑑+(𝑏+𝑐−𝑎−𝑑)&𝑏−𝑎&𝑏+𝑐−𝑎−𝑑@𝛼−𝛿+(𝛼+𝛿)&𝛼&𝛼+𝛿@𝛽−𝛾+(𝛽+𝛾)&𝛽&𝛽+𝛾)| = |■8(2(𝑏−𝑎)&𝑏−𝑎&𝑏+𝑐−𝑎−𝑑@2𝛼&𝛼&𝛼+𝛿@2𝛽&𝛽&𝛽+𝛾)| Taking 2 common from Column 1 = 2 |■8(𝑏 − 𝑎&𝑏 − 𝑎&𝑏 + 𝑐 − 𝑎 − 𝑑@𝛼&𝛼&𝛼 + 𝛿@𝛽&𝛽&𝛽 +𝛾)| = 2 × 0 = 0 Therefore, the given two lines are coplanar. Since Columns 1 and 2 are same, The value of determinant is zero.